����JFIFXX�����    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222����"��4�� ���,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu���#ډb���_�N�?��wQ���5-�~�I���8����TK<5o�Iv-�����k�_U_�����~b�M��d����Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F�?_�'ϔ��_�Ջt��=||I ��6�έ"�����D���/[�k�9���Y�8ds|\���Ҿp6�Ҵ���]��.����6�z<�v��@]�i%��$j��~�g��J>��no����pM[me�i$[����s�o�ᘨ�˸ nɜG-�ĨU�ycP�3.DB�li�;��hj���x7Z^�N�h������N3u{�:j�x�힞��#M&��jL P@_���� P��&��o8������9�����@Sz6�t7#O�ߋ �s}Yf�T���lmr����Z)'N��k�۞p����w\�Tȯ?�8`�O��i{wﭹW�[�r�� ��Q4F�׊���3m&L�=��h3����z~��#�\�l :�F,j@�� ʱ�wQT����8�"kJO���6�֚l����}���R�>ډK���]��y����&����p�}b��;N�1�m�r$�|��7�>e�@B�TM*-iH��g�D�)� E�m�|�ؘbҗ�a��Ҿ����t4���o���G��*oCN�rP���Q��@z,|?W[0�����:�n,jWiE��W��$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S����VN;�}�s?.����� w�9��˟<���Mq4�Wv'��{)0�1mB��V����W[�����8�/<� �%���wT^�5���b��)iM� pg�N�&ݝ��VO~�q���u���9� ����!��J27����$O-���! �:�%H��� ـ����y�ΠM=t{!S�� oK8������t<����è:a������[�����ա�H���~��w��Qz`�po�^ ����Q��n� �,uu�C�$ ^���,������8�#��:�6��e�|~���!�3�3.�\0��q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�<���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y�|�y��� ~�6�@c��1vOp�Ig����4��l�OD���L����� R���c���j�_�uX6��3?nk��Wy�f;^*B� ��@�~a�`��Eu������+���6�L��.ü>��}y���}_�O�6�͐�:�YrG�X��kG�����l^w���~㒶sy��Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2��#I/�׍qz��^t�̔���b�Yz4x���t�){ OH��+(E��A&�N�������XT��o��"�XC��'���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�|Lp�d�H��}�(�.|����k��c4^�"�����Z?ȕ ��a<�L�!039C� �Eu�C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf���M}7����]����s2tcS{�\icTx;�\��7K���P���ʇ Z O-��~��c>"��?�������P��E��O�8��@�8��G��Q�g�a�Վ���󁶠�䧘��_%#r�>�1�z�a��eb��qcPѵ��n���#L��� =��׀t� L�7�`��V���A{�C:�g���e@�w1 Xp3�c3�ġ����p��M"'-�@n4���fG��B3�DJ�8[Jo�ߐ���gK)ƛ��$���� ���8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`���?��K����QK�d����B`�s}�>���`��*�>��,*@J�d�oF*����弝��O}�k��s��]��y�ߘ��c1G�V���<=�7��7����6�q�PT��tXԀ�!9*4�4Tހ3XΛex�46���Y��D ����� �BdemDa����\�_l,��G�/���֌7���Y�](�xTt^%�GE�����4�}bT���ڹ�����;Y)���B�Q��u��>J/J �⮶.�XԄ��j�ݳ�+E��d ��r�5�_D�1 ��o�� �B�x�΢�#���<��W�����8���R6�@g�M�.��� dr�D��>(otU��@x=��~v���2� ӣ�d�oBd��3�eO�6�㣷�����ݜ6��6Y��Qz`��S��{���\P�~z m5{J/L��1������<�e�ͅPu�b�]�ϔ���'������f�b� Zpw��c`"��i���BD@:)ִ�:�]��hv�E�w���T�l��P���"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u�)]կ�����7x���s�M�-<ɯ�c��r�v�����@��$�ޮ}lk���a���'����>x��O\�ZFu>�����ck#��&:��`�$�ai�>2Δ����l���oF[h��lE�ܺ�Πk:)���`�� $[6�����9�����kOw�\|���8}������ބ:��񶐕��I�A1/�=�2[�,�!��.}gN#�u����b��� ~��݊��}34q����d�E��Lc��$��"�[q�U�硬g^��%B �z���r�pJ�ru%v\h1Y�ne`ǥ:g���pQM~�^�Xi� ��`S�:V29.�P���V�?B�k�� AEvw%�_�9C�Q����wKekPؠ�\�;Io d�{ ߞo�c1eP����\� `����E=���@K<�Y���eڼ�J���w����{av�F�'�M�@/J��+9p���|]�����Iw &`��8���&M�hg��[�{��Xj��%��Ӓ�$��(����ʹN���<>�I���RY���K2�NPlL�ɀ)��&e����B+ь����( � �JTx���_?EZ� }@ 6�U���뙢ط�z��dWI�n` D����噥�[��uV��"�G&Ú����2g�}&m��?ċ�"����Om#��������� ��{�ON��"S�X��Ne��ysQ���@Fn��Vg���dX�~nj�]J�<�K]:��FW��b�������62�=��5f����JKw��bf�X�55��~J �%^����:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v���g�8�1��f24;�V���ǔ�)����9���1\��c��v�/'Ƞ�w�������$�4�R-��t���� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃������A��20�c#��@ 0!1@AP"#2Q`$3V�%45a6�FRUq��� ����^7ׅ,$n�������+��F�`��2X'��0vM��p�L=������5��8������u�p~���.�`r�����\���O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;������S�T���1���i[U�ɵz�]��U)V�S6���3$K{�ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u�!��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� ���D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v�����멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$�JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4�[�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ�dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il��d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J��oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.���3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R=X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N�����#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%���JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$���L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����)�H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>�dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\�y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~������Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7��ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz��)�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!)'��8Ϣ�ٔ��ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'�L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���(}��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3�������QT��a����x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3�,#c�co��q�a)*Pt����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O���������m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l�O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m���PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q������~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~�|,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)`7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ����}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i����>J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q��nxҍ!U�f�!eh�i�2�m���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{/ �?�͟��|1�:�#g��W�>$����d��J��d�B��=��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H����O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l����l�cGs�ځ�������y�Ac�����\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6����N6�q������N ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td�� ?���N����a��3��m���C���w��������xA�m�q�m���m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4���r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0������u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ����V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�����Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q�(v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9��3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M����A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#yw��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa����Q�#� WeF��ŮNj�p�J* mQ�N����*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]��陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv:��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WPw���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp�BGv[]�u�Ov���0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R��� ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`(�>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG��{+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�>e]�����Q�r�:����g�,i"�����ԩA�*M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f�����֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ���˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)��h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~������ G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W�I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��BS�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c���]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪�\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W�����6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}�����6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@�P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6�����m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw�k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ����mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e��R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1[y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN��ĕ��0 !01@Q"2AaPq3BR������?���@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j�ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^���ԯ̾9Z��F��������n��1��� ��]�[��)�'������:�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0��;_��3 !01"@AQa2Pq#3BR������?��ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6����������4B>��o��](��$B���m�����a�!=��?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)����I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a�84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b��$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7��k�� 403WebShell
403Webshell
Server IP : 14.139.229.36  /  Your IP : 10.1.1.9
Web Server : Apache
System : Linux gbpuat-tech.ac.in 4.18.0-240.15.1.el8_3.x86_64 #1 SMP Mon Mar 1 17:16:16 UTC 2021 x86_64
User : apache ( 48)
PHP Version : 7.2.24
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/lib/python3.6/site-packages/orca/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/lib/python3.6/site-packages/orca/mathsymbols.py
# Orca
#
# Copyright 2014 Igalia, S.L.
#
# Author: Joanmarie Diggs <jdiggs@igalia.com>
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the
# Free Software Foundation, Inc., Franklin Street, Fifth Floor,
# Boston MA  02110-1301 USA.

__id__        = "$Id$"
__version__   = "$Revision$"
__date__      = "$Date$"
__copyright__ = "Copyright (c) 2014 Igalia, S.L."
__license__   = "LGPL"

import re
import unicodedata

from .orca_i18n import _, C_

fallbackOnUnicodeData = False

SPEAK_NEVER = 1
SPEAK_ALWAYS = 2
SPEAK_FOR_CHARS = 3
speakStyle = SPEAK_ALWAYS

_all = {}
_alnum = {}
_arrows = {}
_operators = {}
_shapes = {}
_combining = {}

# Note that the following are to help us identify what is likely a math symbol
# (as opposed to one serving the function of an image in "This way up.")
_arrows.update(dict.fromkeys(map(chr, range(0x2190, 0x2200))))
_arrows.update(dict.fromkeys(map(chr, range(0x2750, 0x2800))))
_arrows.update(dict.fromkeys(map(chr, range(0x2b30, 0x2b50))))
_operators.update(dict.fromkeys(map(chr, range(0x2220, 0x2300))))
_operators.update(dict.fromkeys(map(chr, range(0x2a00, 0x2b00))))
_shapes.update(dict.fromkeys(map(chr, range(0x25a0, 0x2600))))

# Unicode has a huge number of individual symbols to include styles, such as
# bold, italic, double-struck, etc. These are so far not supported by speech
# synthesizers. So we'll maintain a dictionary of equivalent symbols which
# speech synthesizers should know along with lists of the various styles.
_alnum['\u2102'] = 'C'
_alnum['\u210a'] = 'g'
_alnum['\u210b'] = 'H'
_alnum['\u210c'] = 'H'
_alnum['\u210d'] = 'H'
_alnum['\u210e'] = 'h'
_alnum['\u2110'] = 'I'
_alnum['\u2111'] = 'I'
_alnum['\u2112'] = 'L'
_alnum['\u2113'] = 'l'
_alnum['\u2115'] = 'N'
_alnum['\u2119'] = 'P'
_alnum['\u211a'] = 'Q'
_alnum['\u211b'] = 'R'
_alnum['\u211c'] = 'R'
_alnum['\u211d'] = 'R'
_alnum['\u2124'] = 'Z'
_alnum['\u2128'] = 'Z'
_alnum['\u212c'] = 'B'
_alnum['\u212d'] = 'C'
_alnum['\u212f'] = 'e'
_alnum['\u2130'] = 'E'
_alnum['\u2131'] = 'F'
_alnum['\u2133'] = 'M'
_alnum['\u2134'] = 'o'
_alnum['\U0001d400'] = 'A'
_alnum['\U0001d401'] = 'B'
_alnum['\U0001d402'] = 'C'
_alnum['\U0001d403'] = 'D'
_alnum['\U0001d404'] = 'E'
_alnum['\U0001d405'] = 'F'
_alnum['\U0001d406'] = 'G'
_alnum['\U0001d407'] = 'H'
_alnum['\U0001d408'] = 'I'
_alnum['\U0001d409'] = 'J'
_alnum['\U0001d40a'] = 'K'
_alnum['\U0001d40b'] = 'L'
_alnum['\U0001d40c'] = 'M'
_alnum['\U0001d40d'] = 'N'
_alnum['\U0001d40e'] = 'O'
_alnum['\U0001d40f'] = 'P'
_alnum['\U0001d410'] = 'Q'
_alnum['\U0001d411'] = 'R'
_alnum['\U0001d412'] = 'S'
_alnum['\U0001d413'] = 'T'
_alnum['\U0001d414'] = 'U'
_alnum['\U0001d415'] = 'V'
_alnum['\U0001d416'] = 'W'
_alnum['\U0001d417'] = 'X'
_alnum['\U0001d418'] = 'Y'
_alnum['\U0001d419'] = 'Z'
_alnum['\U0001d41a'] = 'a'
_alnum['\U0001d41b'] = 'b'
_alnum['\U0001d41c'] = 'c'
_alnum['\U0001d41d'] = 'd'
_alnum['\U0001d41e'] = 'e'
_alnum['\U0001d41f'] = 'f'
_alnum['\U0001d420'] = 'g'
_alnum['\U0001d421'] = 'h'
_alnum['\U0001d422'] = 'i'
_alnum['\U0001d423'] = 'j'
_alnum['\U0001d424'] = 'k'
_alnum['\U0001d425'] = 'l'
_alnum['\U0001d426'] = 'm'
_alnum['\U0001d427'] = 'n'
_alnum['\U0001d428'] = 'o'
_alnum['\U0001d429'] = 'p'
_alnum['\U0001d42a'] = 'q'
_alnum['\U0001d42b'] = 'r'
_alnum['\U0001d42c'] = 's'
_alnum['\U0001d42d'] = 't'
_alnum['\U0001d42e'] = 'u'
_alnum['\U0001d42f'] = 'v'
_alnum['\U0001d430'] = 'w'
_alnum['\U0001d431'] = 'x'
_alnum['\U0001d432'] = 'y'
_alnum['\U0001d433'] = 'z'
_alnum['\U0001d434'] = 'A'
_alnum['\U0001d435'] = 'B'
_alnum['\U0001d436'] = 'C'
_alnum['\U0001d437'] = 'D'
_alnum['\U0001d438'] = 'E'
_alnum['\U0001d439'] = 'F'
_alnum['\U0001d43a'] = 'G'
_alnum['\U0001d43b'] = 'H'
_alnum['\U0001d43c'] = 'I'
_alnum['\U0001d43d'] = 'J'
_alnum['\U0001d43e'] = 'K'
_alnum['\U0001d43f'] = 'L'
_alnum['\U0001d440'] = 'M'
_alnum['\U0001d441'] = 'N'
_alnum['\U0001d442'] = 'O'
_alnum['\U0001d443'] = 'P'
_alnum['\U0001d444'] = 'Q'
_alnum['\U0001d445'] = 'R'
_alnum['\U0001d446'] = 'S'
_alnum['\U0001d447'] = 'T'
_alnum['\U0001d448'] = 'U'
_alnum['\U0001d449'] = 'V'
_alnum['\U0001d44a'] = 'W'
_alnum['\U0001d44b'] = 'X'
_alnum['\U0001d44c'] = 'Y'
_alnum['\U0001d44d'] = 'Z'
_alnum['\U0001d44e'] = 'a'
_alnum['\U0001d44f'] = 'b'
_alnum['\U0001d450'] = 'c'
_alnum['\U0001d451'] = 'd'
_alnum['\U0001d452'] = 'e'
_alnum['\U0001d453'] = 'f'
_alnum['\U0001d454'] = 'g'
_alnum['\U0001d456'] = 'i'
_alnum['\U0001d457'] = 'j'
_alnum['\U0001d458'] = 'k'
_alnum['\U0001d459'] = 'l'
_alnum['\U0001d45a'] = 'm'
_alnum['\U0001d45b'] = 'n'
_alnum['\U0001d45c'] = 'o'
_alnum['\U0001d45d'] = 'p'
_alnum['\U0001d45e'] = 'q'
_alnum['\U0001d45f'] = 'r'
_alnum['\U0001d460'] = 's'
_alnum['\U0001d461'] = 't'
_alnum['\U0001d462'] = 'u'
_alnum['\U0001d463'] = 'v'
_alnum['\U0001d464'] = 'w'
_alnum['\U0001d465'] = 'x'
_alnum['\U0001d466'] = 'y'
_alnum['\U0001d467'] = 'z'
_alnum['\U0001d468'] = 'A'
_alnum['\U0001d469'] = 'B'
_alnum['\U0001d46a'] = 'C'
_alnum['\U0001d46b'] = 'D'
_alnum['\U0001d46c'] = 'E'
_alnum['\U0001d46d'] = 'F'
_alnum['\U0001d46e'] = 'G'
_alnum['\U0001d46f'] = 'H'
_alnum['\U0001d470'] = 'I'
_alnum['\U0001d471'] = 'J'
_alnum['\U0001d472'] = 'K'
_alnum['\U0001d473'] = 'L'
_alnum['\U0001d474'] = 'M'
_alnum['\U0001d475'] = 'N'
_alnum['\U0001d476'] = 'O'
_alnum['\U0001d477'] = 'P'
_alnum['\U0001d478'] = 'Q'
_alnum['\U0001d479'] = 'R'
_alnum['\U0001d47a'] = 'S'
_alnum['\U0001d47b'] = 'T'
_alnum['\U0001d47c'] = 'U'
_alnum['\U0001d47d'] = 'V'
_alnum['\U0001d47e'] = 'W'
_alnum['\U0001d47f'] = 'X'
_alnum['\U0001d480'] = 'Y'
_alnum['\U0001d481'] = 'Z'
_alnum['\U0001d482'] = 'a'
_alnum['\U0001d483'] = 'b'
_alnum['\U0001d484'] = 'c'
_alnum['\U0001d485'] = 'd'
_alnum['\U0001d486'] = 'e'
_alnum['\U0001d487'] = 'f'
_alnum['\U0001d488'] = 'g'
_alnum['\U0001d489'] = 'h'
_alnum['\U0001d48a'] = 'i'
_alnum['\U0001d48b'] = 'j'
_alnum['\U0001d48c'] = 'k'
_alnum['\U0001d48d'] = 'l'
_alnum['\U0001d48e'] = 'm'
_alnum['\U0001d48f'] = 'n'
_alnum['\U0001d490'] = 'o'
_alnum['\U0001d491'] = 'p'
_alnum['\U0001d492'] = 'q'
_alnum['\U0001d493'] = 'r'
_alnum['\U0001d494'] = 's'
_alnum['\U0001d495'] = 't'
_alnum['\U0001d496'] = 'u'
_alnum['\U0001d497'] = 'v'
_alnum['\U0001d498'] = 'w'
_alnum['\U0001d499'] = 'x'
_alnum['\U0001d49a'] = 'y'
_alnum['\U0001d49b'] = 'z'
_alnum['\U0001d49c'] = 'A'
_alnum['\U0001d49e'] = 'C'
_alnum['\U0001d49f'] = 'D'
_alnum['\U0001d4a2'] = 'G'
_alnum['\U0001d4a5'] = 'J'
_alnum['\U0001d4a6'] = 'K'
_alnum['\U0001d4a9'] = 'N'
_alnum['\U0001d4aa'] = 'O'
_alnum['\U0001d4ab'] = 'P'
_alnum['\U0001d4ac'] = 'Q'
_alnum['\U0001d4ae'] = 'S'
_alnum['\U0001d4af'] = 'T'
_alnum['\U0001d4b0'] = 'U'
_alnum['\U0001d4b1'] = 'V'
_alnum['\U0001d4b2'] = 'W'
_alnum['\U0001d4b3'] = 'X'
_alnum['\U0001d4b4'] = 'Y'
_alnum['\U0001d4b5'] = 'Z'
_alnum['\U0001d4b6'] = 'a'
_alnum['\U0001d4b7'] = 'b'
_alnum['\U0001d4b8'] = 'c'
_alnum['\U0001d4b9'] = 'd'
_alnum['\U0001d4bb'] = 'f'
_alnum['\U0001d4bd'] = 'h'
_alnum['\U0001d4be'] = 'i'
_alnum['\U0001d4bf'] = 'j'
_alnum['\U0001d4c0'] = 'k'
_alnum['\U0001d4c1'] = 'l'
_alnum['\U0001d4c2'] = 'm'
_alnum['\U0001d4c3'] = 'n'
_alnum['\U0001d4c5'] = 'p'
_alnum['\U0001d4c6'] = 'q'
_alnum['\U0001d4c7'] = 'r'
_alnum['\U0001d4c8'] = 's'
_alnum['\U0001d4c9'] = 't'
_alnum['\U0001d4ca'] = 'u'
_alnum['\U0001d4cb'] = 'v'
_alnum['\U0001d4cc'] = 'w'
_alnum['\U0001d4cd'] = 'x'
_alnum['\U0001d4ce'] = 'y'
_alnum['\U0001d4cf'] = 'z'
_alnum['\U0001d4d0'] = 'A'
_alnum['\U0001d4d1'] = 'B'
_alnum['\U0001d4d2'] = 'C'
_alnum['\U0001d4d3'] = 'D'
_alnum['\U0001d4d4'] = 'E'
_alnum['\U0001d4d5'] = 'F'
_alnum['\U0001d4d6'] = 'G'
_alnum['\U0001d4d7'] = 'H'
_alnum['\U0001d4d8'] = 'I'
_alnum['\U0001d4d9'] = 'J'
_alnum['\U0001d4da'] = 'K'
_alnum['\U0001d4db'] = 'L'
_alnum['\U0001d4dc'] = 'M'
_alnum['\U0001d4dd'] = 'N'
_alnum['\U0001d4de'] = 'O'
_alnum['\U0001d4df'] = 'P'
_alnum['\U0001d4e0'] = 'Q'
_alnum['\U0001d4e1'] = 'R'
_alnum['\U0001d4e2'] = 'S'
_alnum['\U0001d4e3'] = 'T'
_alnum['\U0001d4e4'] = 'U'
_alnum['\U0001d4e5'] = 'V'
_alnum['\U0001d4e6'] = 'W'
_alnum['\U0001d4e7'] = 'X'
_alnum['\U0001d4e8'] = 'Y'
_alnum['\U0001d4e9'] = 'Z'
_alnum['\U0001d4ea'] = 'a'
_alnum['\U0001d4eb'] = 'b'
_alnum['\U0001d4ec'] = 'c'
_alnum['\U0001d4ed'] = 'd'
_alnum['\U0001d4ee'] = 'e'
_alnum['\U0001d4ef'] = 'f'
_alnum['\U0001d4f0'] = 'g'
_alnum['\U0001d4f1'] = 'h'
_alnum['\U0001d4f2'] = 'i'
_alnum['\U0001d4f3'] = 'j'
_alnum['\U0001d4f4'] = 'k'
_alnum['\U0001d4f5'] = 'l'
_alnum['\U0001d4f6'] = 'm'
_alnum['\U0001d4f7'] = 'n'
_alnum['\U0001d4f8'] = 'o'
_alnum['\U0001d4f9'] = 'p'
_alnum['\U0001d4fa'] = 'q'
_alnum['\U0001d4fb'] = 'r'
_alnum['\U0001d4fc'] = 's'
_alnum['\U0001d4fd'] = 't'
_alnum['\U0001d4fe'] = 'u'
_alnum['\U0001d4ff'] = 'v'
_alnum['\U0001d500'] = 'w'
_alnum['\U0001d501'] = 'x'
_alnum['\U0001d502'] = 'y'
_alnum['\U0001d503'] = 'z'
_alnum['\U0001d504'] = 'A'
_alnum['\U0001d505'] = 'B'
_alnum['\U0001d507'] = 'D'
_alnum['\U0001d508'] = 'E'
_alnum['\U0001d509'] = 'F'
_alnum['\U0001d50a'] = 'G'
_alnum['\U0001d50d'] = 'J'
_alnum['\U0001d50e'] = 'K'
_alnum['\U0001d50f'] = 'L'
_alnum['\U0001d510'] = 'M'
_alnum['\U0001d511'] = 'N'
_alnum['\U0001d512'] = 'O'
_alnum['\U0001d513'] = 'P'
_alnum['\U0001d514'] = 'Q'
_alnum['\U0001d516'] = 'S'
_alnum['\U0001d517'] = 'T'
_alnum['\U0001d518'] = 'U'
_alnum['\U0001d519'] = 'V'
_alnum['\U0001d51a'] = 'W'
_alnum['\U0001d51b'] = 'X'
_alnum['\U0001d51c'] = 'Y'
_alnum['\U0001d51e'] = 'a'
_alnum['\U0001d51f'] = 'b'
_alnum['\U0001d520'] = 'c'
_alnum['\U0001d521'] = 'd'
_alnum['\U0001d522'] = 'e'
_alnum['\U0001d523'] = 'f'
_alnum['\U0001d524'] = 'g'
_alnum['\U0001d525'] = 'h'
_alnum['\U0001d526'] = 'i'
_alnum['\U0001d527'] = 'j'
_alnum['\U0001d528'] = 'k'
_alnum['\U0001d529'] = 'l'
_alnum['\U0001d52a'] = 'm'
_alnum['\U0001d52b'] = 'n'
_alnum['\U0001d52c'] = 'o'
_alnum['\U0001d52d'] = 'p'
_alnum['\U0001d52e'] = 'q'
_alnum['\U0001d52f'] = 'r'
_alnum['\U0001d530'] = 's'
_alnum['\U0001d531'] = 't'
_alnum['\U0001d532'] = 'u'
_alnum['\U0001d533'] = 'v'
_alnum['\U0001d534'] = 'w'
_alnum['\U0001d535'] = 'x'
_alnum['\U0001d536'] = 'y'
_alnum['\U0001d537'] = 'z'
_alnum['\U0001d538'] = 'A'
_alnum['\U0001d539'] = 'B'
_alnum['\U0001d53b'] = 'D'
_alnum['\U0001d53c'] = 'E'
_alnum['\U0001d53d'] = 'F'
_alnum['\U0001d53e'] = 'G'
_alnum['\U0001d540'] = 'I'
_alnum['\U0001d541'] = 'J'
_alnum['\U0001d542'] = 'K'
_alnum['\U0001d543'] = 'L'
_alnum['\U0001d544'] = 'M'
_alnum['\U0001d546'] = 'O'
_alnum['\U0001d54a'] = 'S'
_alnum['\U0001d54b'] = 'T'
_alnum['\U0001d54c'] = 'U'
_alnum['\U0001d54d'] = 'V'
_alnum['\U0001d54e'] = 'W'
_alnum['\U0001d54f'] = 'X'
_alnum['\U0001d550'] = 'Y'
_alnum['\U0001d552'] = 'a'
_alnum['\U0001d553'] = 'b'
_alnum['\U0001d554'] = 'c'
_alnum['\U0001d555'] = 'd'
_alnum['\U0001d556'] = 'e'
_alnum['\U0001d557'] = 'f'
_alnum['\U0001d558'] = 'g'
_alnum['\U0001d559'] = 'h'
_alnum['\U0001d55a'] = 'i'
_alnum['\U0001d55b'] = 'j'
_alnum['\U0001d55c'] = 'k'
_alnum['\U0001d55d'] = 'l'
_alnum['\U0001d55e'] = 'm'
_alnum['\U0001d55f'] = 'n'
_alnum['\U0001d560'] = 'o'
_alnum['\U0001d561'] = 'p'
_alnum['\U0001d562'] = 'q'
_alnum['\U0001d563'] = 'r'
_alnum['\U0001d564'] = 's'
_alnum['\U0001d565'] = 't'
_alnum['\U0001d566'] = 'u'
_alnum['\U0001d567'] = 'v'
_alnum['\U0001d568'] = 'w'
_alnum['\U0001d569'] = 'x'
_alnum['\U0001d56a'] = 'y'
_alnum['\U0001d56b'] = 'z'
_alnum['\U0001d56c'] = 'A'
_alnum['\U0001d56d'] = 'B'
_alnum['\U0001d56e'] = 'C'
_alnum['\U0001d56f'] = 'D'
_alnum['\U0001d570'] = 'E'
_alnum['\U0001d571'] = 'F'
_alnum['\U0001d572'] = 'G'
_alnum['\U0001d573'] = 'H'
_alnum['\U0001d574'] = 'I'
_alnum['\U0001d575'] = 'J'
_alnum['\U0001d576'] = 'K'
_alnum['\U0001d577'] = 'L'
_alnum['\U0001d578'] = 'M'
_alnum['\U0001d579'] = 'N'
_alnum['\U0001d57a'] = 'O'
_alnum['\U0001d57b'] = 'P'
_alnum['\U0001d57c'] = 'Q'
_alnum['\U0001d57d'] = 'R'
_alnum['\U0001d57e'] = 'S'
_alnum['\U0001d57f'] = 'T'
_alnum['\U0001d580'] = 'U'
_alnum['\U0001d581'] = 'V'
_alnum['\U0001d582'] = 'W'
_alnum['\U0001d583'] = 'X'
_alnum['\U0001d584'] = 'Y'
_alnum['\U0001d585'] = 'Z'
_alnum['\U0001d586'] = 'a'
_alnum['\U0001d587'] = 'b'
_alnum['\U0001d588'] = 'c'
_alnum['\U0001d589'] = 'd'
_alnum['\U0001d58a'] = 'e'
_alnum['\U0001d58b'] = 'f'
_alnum['\U0001d58c'] = 'g'
_alnum['\U0001d58d'] = 'h'
_alnum['\U0001d58e'] = 'i'
_alnum['\U0001d58f'] = 'j'
_alnum['\U0001d590'] = 'k'
_alnum['\U0001d591'] = 'l'
_alnum['\U0001d592'] = 'm'
_alnum['\U0001d593'] = 'n'
_alnum['\U0001d594'] = 'o'
_alnum['\U0001d595'] = 'p'
_alnum['\U0001d596'] = 'q'
_alnum['\U0001d597'] = 'r'
_alnum['\U0001d598'] = 's'
_alnum['\U0001d599'] = 't'
_alnum['\U0001d59a'] = 'u'
_alnum['\U0001d59b'] = 'v'
_alnum['\U0001d59c'] = 'w'
_alnum['\U0001d59d'] = 'x'
_alnum['\U0001d59e'] = 'y'
_alnum['\U0001d59f'] = 'z'
_alnum['\U0001d5a0'] = 'A'
_alnum['\U0001d5a1'] = 'B'
_alnum['\U0001d5a2'] = 'C'
_alnum['\U0001d5a3'] = 'D'
_alnum['\U0001d5a4'] = 'E'
_alnum['\U0001d5a5'] = 'F'
_alnum['\U0001d5a6'] = 'G'
_alnum['\U0001d5a7'] = 'H'
_alnum['\U0001d5a8'] = 'I'
_alnum['\U0001d5a9'] = 'J'
_alnum['\U0001d5aa'] = 'K'
_alnum['\U0001d5ab'] = 'L'
_alnum['\U0001d5ac'] = 'M'
_alnum['\U0001d5ad'] = 'N'
_alnum['\U0001d5ae'] = 'O'
_alnum['\U0001d5af'] = 'P'
_alnum['\U0001d5b0'] = 'Q'
_alnum['\U0001d5b1'] = 'R'
_alnum['\U0001d5b2'] = 'S'
_alnum['\U0001d5b3'] = 'T'
_alnum['\U0001d5b4'] = 'U'
_alnum['\U0001d5b5'] = 'V'
_alnum['\U0001d5b6'] = 'W'
_alnum['\U0001d5b7'] = 'X'
_alnum['\U0001d5b8'] = 'Y'
_alnum['\U0001d5b9'] = 'Z'
_alnum['\U0001d5ba'] = 'a'
_alnum['\U0001d5bb'] = 'b'
_alnum['\U0001d5bc'] = 'c'
_alnum['\U0001d5bd'] = 'd'
_alnum['\U0001d5be'] = 'e'
_alnum['\U0001d5bf'] = 'f'
_alnum['\U0001d5c0'] = 'g'
_alnum['\U0001d5c1'] = 'h'
_alnum['\U0001d5c2'] = 'i'
_alnum['\U0001d5c3'] = 'j'
_alnum['\U0001d5c4'] = 'k'
_alnum['\U0001d5c5'] = 'l'
_alnum['\U0001d5c6'] = 'm'
_alnum['\U0001d5c7'] = 'n'
_alnum['\U0001d5c8'] = 'o'
_alnum['\U0001d5c9'] = 'p'
_alnum['\U0001d5ca'] = 'q'
_alnum['\U0001d5cb'] = 'r'
_alnum['\U0001d5cc'] = 's'
_alnum['\U0001d5cd'] = 't'
_alnum['\U0001d5ce'] = 'u'
_alnum['\U0001d5cf'] = 'v'
_alnum['\U0001d5d0'] = 'w'
_alnum['\U0001d5d1'] = 'x'
_alnum['\U0001d5d2'] = 'y'
_alnum['\U0001d5d3'] = 'z'
_alnum['\U0001d5d4'] = 'A'
_alnum['\U0001d5d5'] = 'B'
_alnum['\U0001d5d6'] = 'C'
_alnum['\U0001d5d7'] = 'D'
_alnum['\U0001d5d8'] = 'E'
_alnum['\U0001d5d9'] = 'F'
_alnum['\U0001d5da'] = 'G'
_alnum['\U0001d5db'] = 'H'
_alnum['\U0001d5dc'] = 'I'
_alnum['\U0001d5dd'] = 'J'
_alnum['\U0001d5de'] = 'K'
_alnum['\U0001d5df'] = 'L'
_alnum['\U0001d5e0'] = 'M'
_alnum['\U0001d5e1'] = 'N'
_alnum['\U0001d5e2'] = 'O'
_alnum['\U0001d5e3'] = 'P'
_alnum['\U0001d5e4'] = 'Q'
_alnum['\U0001d5e5'] = 'R'
_alnum['\U0001d5e6'] = 'S'
_alnum['\U0001d5e7'] = 'T'
_alnum['\U0001d5e8'] = 'U'
_alnum['\U0001d5e9'] = 'V'
_alnum['\U0001d5ea'] = 'W'
_alnum['\U0001d5eb'] = 'X'
_alnum['\U0001d5ec'] = 'Y'
_alnum['\U0001d5ed'] = 'Z'
_alnum['\U0001d5ee'] = 'a'
_alnum['\U0001d5ef'] = 'b'
_alnum['\U0001d5f0'] = 'c'
_alnum['\U0001d5f1'] = 'd'
_alnum['\U0001d5f2'] = 'e'
_alnum['\U0001d5f3'] = 'f'
_alnum['\U0001d5f4'] = 'g'
_alnum['\U0001d5f5'] = 'h'
_alnum['\U0001d5f6'] = 'i'
_alnum['\U0001d5f7'] = 'j'
_alnum['\U0001d5f8'] = 'k'
_alnum['\U0001d5f9'] = 'l'
_alnum['\U0001d5fa'] = 'm'
_alnum['\U0001d5fb'] = 'n'
_alnum['\U0001d5fc'] = 'o'
_alnum['\U0001d5fd'] = 'p'
_alnum['\U0001d5fe'] = 'q'
_alnum['\U0001d5ff'] = 'r'
_alnum['\U0001d600'] = 's'
_alnum['\U0001d601'] = 't'
_alnum['\U0001d602'] = 'u'
_alnum['\U0001d603'] = 'v'
_alnum['\U0001d604'] = 'w'
_alnum['\U0001d605'] = 'x'
_alnum['\U0001d606'] = 'y'
_alnum['\U0001d607'] = 'z'
_alnum['\U0001d608'] = 'A'
_alnum['\U0001d609'] = 'B'
_alnum['\U0001d60a'] = 'C'
_alnum['\U0001d60b'] = 'D'
_alnum['\U0001d60c'] = 'E'
_alnum['\U0001d60d'] = 'F'
_alnum['\U0001d60e'] = 'G'
_alnum['\U0001d60f'] = 'H'
_alnum['\U0001d610'] = 'I'
_alnum['\U0001d611'] = 'J'
_alnum['\U0001d612'] = 'K'
_alnum['\U0001d613'] = 'L'
_alnum['\U0001d614'] = 'M'
_alnum['\U0001d615'] = 'N'
_alnum['\U0001d616'] = 'O'
_alnum['\U0001d617'] = 'P'
_alnum['\U0001d618'] = 'Q'
_alnum['\U0001d619'] = 'R'
_alnum['\U0001d61a'] = 'S'
_alnum['\U0001d61b'] = 'T'
_alnum['\U0001d61c'] = 'U'
_alnum['\U0001d61d'] = 'V'
_alnum['\U0001d61e'] = 'W'
_alnum['\U0001d61f'] = 'X'
_alnum['\U0001d620'] = 'Y'
_alnum['\U0001d621'] = 'Z'
_alnum['\U0001d622'] = 'a'
_alnum['\U0001d623'] = 'b'
_alnum['\U0001d624'] = 'c'
_alnum['\U0001d625'] = 'd'
_alnum['\U0001d626'] = 'e'
_alnum['\U0001d627'] = 'f'
_alnum['\U0001d628'] = 'g'
_alnum['\U0001d629'] = 'h'
_alnum['\U0001d62a'] = 'i'
_alnum['\U0001d62b'] = 'j'
_alnum['\U0001d62c'] = 'k'
_alnum['\U0001d62d'] = 'l'
_alnum['\U0001d62e'] = 'm'
_alnum['\U0001d62f'] = 'n'
_alnum['\U0001d630'] = 'o'
_alnum['\U0001d631'] = 'p'
_alnum['\U0001d632'] = 'q'
_alnum['\U0001d633'] = 'r'
_alnum['\U0001d634'] = 's'
_alnum['\U0001d635'] = 't'
_alnum['\U0001d636'] = 'u'
_alnum['\U0001d637'] = 'v'
_alnum['\U0001d638'] = 'w'
_alnum['\U0001d639'] = 'x'
_alnum['\U0001d63a'] = 'y'
_alnum['\U0001d63b'] = 'z'
_alnum['\U0001d63c'] = 'A'
_alnum['\U0001d63d'] = 'B'
_alnum['\U0001d63e'] = 'C'
_alnum['\U0001d63f'] = 'D'
_alnum['\U0001d640'] = 'E'
_alnum['\U0001d641'] = 'F'
_alnum['\U0001d642'] = 'G'
_alnum['\U0001d643'] = 'H'
_alnum['\U0001d644'] = 'I'
_alnum['\U0001d645'] = 'J'
_alnum['\U0001d646'] = 'K'
_alnum['\U0001d647'] = 'L'
_alnum['\U0001d648'] = 'M'
_alnum['\U0001d649'] = 'N'
_alnum['\U0001d64a'] = 'O'
_alnum['\U0001d64b'] = 'P'
_alnum['\U0001d64c'] = 'Q'
_alnum['\U0001d64d'] = 'R'
_alnum['\U0001d64e'] = 'S'
_alnum['\U0001d64f'] = 'T'
_alnum['\U0001d650'] = 'U'
_alnum['\U0001d651'] = 'V'
_alnum['\U0001d652'] = 'W'
_alnum['\U0001d653'] = 'X'
_alnum['\U0001d654'] = 'Y'
_alnum['\U0001d655'] = 'Z'
_alnum['\U0001d656'] = 'a'
_alnum['\U0001d657'] = 'b'
_alnum['\U0001d658'] = 'c'
_alnum['\U0001d659'] = 'd'
_alnum['\U0001d65a'] = 'e'
_alnum['\U0001d65b'] = 'f'
_alnum['\U0001d65c'] = 'g'
_alnum['\U0001d65d'] = 'h'
_alnum['\U0001d65e'] = 'i'
_alnum['\U0001d65f'] = 'j'
_alnum['\U0001d660'] = 'k'
_alnum['\U0001d661'] = 'l'
_alnum['\U0001d662'] = 'm'
_alnum['\U0001d663'] = 'n'
_alnum['\U0001d664'] = 'o'
_alnum['\U0001d665'] = 'p'
_alnum['\U0001d666'] = 'q'
_alnum['\U0001d667'] = 'r'
_alnum['\U0001d668'] = 's'
_alnum['\U0001d669'] = 't'
_alnum['\U0001d66a'] = 'u'
_alnum['\U0001d66b'] = 'v'
_alnum['\U0001d66c'] = 'w'
_alnum['\U0001d66d'] = 'x'
_alnum['\U0001d66e'] = 'y'
_alnum['\U0001d66f'] = 'z'
_alnum['\U0001d670'] = 'A'
_alnum['\U0001d671'] = 'B'
_alnum['\U0001d672'] = 'C'
_alnum['\U0001d673'] = 'D'
_alnum['\U0001d674'] = 'E'
_alnum['\U0001d675'] = 'F'
_alnum['\U0001d676'] = 'G'
_alnum['\U0001d677'] = 'H'
_alnum['\U0001d678'] = 'I'
_alnum['\U0001d679'] = 'J'
_alnum['\U0001d67a'] = 'K'
_alnum['\U0001d67b'] = 'L'
_alnum['\U0001d67c'] = 'M'
_alnum['\U0001d67d'] = 'N'
_alnum['\U0001d67e'] = 'O'
_alnum['\U0001d67f'] = 'P'
_alnum['\U0001d680'] = 'Q'
_alnum['\U0001d681'] = 'R'
_alnum['\U0001d682'] = 'S'
_alnum['\U0001d683'] = 'T'
_alnum['\U0001d684'] = 'U'
_alnum['\U0001d685'] = 'V'
_alnum['\U0001d686'] = 'W'
_alnum['\U0001d687'] = 'X'
_alnum['\U0001d688'] = 'Y'
_alnum['\U0001d689'] = 'Z'
_alnum['\U0001d68a'] = 'a'
_alnum['\U0001d68b'] = 'b'
_alnum['\U0001d68c'] = 'c'
_alnum['\U0001d68d'] = 'd'
_alnum['\U0001d68e'] = 'e'
_alnum['\U0001d68f'] = 'f'
_alnum['\U0001d690'] = 'g'
_alnum['\U0001d691'] = 'h'
_alnum['\U0001d692'] = 'i'
_alnum['\U0001d693'] = 'j'
_alnum['\U0001d694'] = 'k'
_alnum['\U0001d695'] = 'l'
_alnum['\U0001d696'] = 'm'
_alnum['\U0001d697'] = 'n'
_alnum['\U0001d698'] = 'o'
_alnum['\U0001d699'] = 'p'
_alnum['\U0001d69a'] = 'q'
_alnum['\U0001d69b'] = 'r'
_alnum['\U0001d69c'] = 's'
_alnum['\U0001d69d'] = 't'
_alnum['\U0001d69e'] = 'u'
_alnum['\U0001d69f'] = 'v'
_alnum['\U0001d6a0'] = 'w'
_alnum['\U0001d6a1'] = 'x'
_alnum['\U0001d6a2'] = 'y'
_alnum['\U0001d6a3'] = 'z'
_alnum['\U0001d6a4'] = 'i'
_alnum['\U0001d6a5'] = 'j'
_alnum['\U0001d6a8'] = 'Α'
_alnum['\U0001d6a9'] = 'Β'
_alnum['\U0001d6aa'] = 'Γ'
_alnum['\U0001d6ab'] = 'Δ'
_alnum['\U0001d6ac'] = 'Ε'
_alnum['\U0001d6ad'] = 'Ζ'
_alnum['\U0001d6ae'] = 'Η'
_alnum['\U0001d6af'] = 'ϴ'
_alnum['\U0001d6b0'] = 'Ι'
_alnum['\U0001d6b1'] = 'Κ'
_alnum['\U0001d6b2'] = 'Λ'
_alnum['\U0001d6b3'] = 'Μ'
_alnum['\U0001d6b4'] = 'Ν'
_alnum['\U0001d6b5'] = 'Ξ'
_alnum['\U0001d6b6'] = 'Ο'
_alnum['\U0001d6b7'] = 'Π'
_alnum['\U0001d6b8'] = 'Ρ'
_alnum['\U0001d6b9'] = 'ϴ'
_alnum['\U0001d6ba'] = 'Σ'
_alnum['\U0001d6bb'] = 'Τ'
_alnum['\U0001d6bc'] = 'Υ'
_alnum['\U0001d6bd'] = 'Φ'
_alnum['\U0001d6be'] = 'Χ'
_alnum['\U0001d6bf'] = 'Ψ'
_alnum['\U0001d6c0'] = 'Ω'
_alnum['\U0001d6c1'] = '∇'
_alnum['\U0001d6c2'] = 'α'
_alnum['\U0001d6c3'] = 'β'
_alnum['\U0001d6c4'] = 'γ'
_alnum['\U0001d6c5'] = 'δ'
_alnum['\U0001d6c6'] = 'ε'
_alnum['\U0001d6c7'] = 'ζ'
_alnum['\U0001d6c8'] = 'η'
_alnum['\U0001d6c9'] = 'θ'
_alnum['\U0001d6ca'] = 'ι'
_alnum['\U0001d6cb'] = 'κ'
_alnum['\U0001d6cc'] = 'λ'
_alnum['\U0001d6cd'] = 'μ'
_alnum['\U0001d6ce'] = 'ν'
_alnum['\U0001d6cf'] = 'ξ'
_alnum['\U0001d6d0'] = 'ο'
_alnum['\U0001d6d1'] = 'π'
_alnum['\U0001d6d2'] = 'ρ'
_alnum['\U0001d6d3'] = 'ς'
_alnum['\U0001d6d4'] = 'σ'
_alnum['\U0001d6d5'] = 'τ'
_alnum['\U0001d6d6'] = 'υ'
_alnum['\U0001d6d7'] = 'φ'
_alnum['\U0001d6d8'] = 'χ'
_alnum['\U0001d6d9'] = 'ψ'
_alnum['\U0001d6da'] = 'ω'
_alnum['\U0001d6db'] = '∂'
_alnum['\U0001d6dc'] = 'ϵ'
_alnum['\U0001d6dd'] = 'ϑ'
_alnum['\U0001d6de'] = 'ϰ'
_alnum['\U0001d6df'] = 'ϕ'
_alnum['\U0001d6e0'] = 'ϱ'
_alnum['\U0001d6e1'] = 'ϖ'
_alnum['\U0001d6e2'] = 'Α'
_alnum['\U0001d6e3'] = 'Β'
_alnum['\U0001d6e4'] = 'Γ'
_alnum['\U0001d6e5'] = 'Δ'
_alnum['\U0001d6e6'] = 'Ε'
_alnum['\U0001d6e7'] = 'Ζ'
_alnum['\U0001d6e8'] = 'Η'
_alnum['\U0001d6e9'] = 'ϴ'
_alnum['\U0001d6ea'] = 'Ι'
_alnum['\U0001d6eb'] = 'Κ'
_alnum['\U0001d6ec'] = 'Λ'
_alnum['\U0001d6ed'] = 'Μ'
_alnum['\U0001d6ee'] = 'Ν'
_alnum['\U0001d6ef'] = 'Ξ'
_alnum['\U0001d6f0'] = 'Ο'
_alnum['\U0001d6f1'] = 'Π'
_alnum['\U0001d6f2'] = 'Ρ'
_alnum['\U0001d6f3'] = 'ϴ'
_alnum['\U0001d6f4'] = 'Σ'
_alnum['\U0001d6f5'] = 'Τ'
_alnum['\U0001d6f6'] = 'Υ'
_alnum['\U0001d6f7'] = 'Φ'
_alnum['\U0001d6f8'] = 'Χ'
_alnum['\U0001d6f9'] = 'Ψ'
_alnum['\U0001d6fa'] = 'Ω'
_alnum['\U0001d6fb'] = '∇'
_alnum['\U0001d6fc'] = 'α'
_alnum['\U0001d6fd'] = 'β'
_alnum['\U0001d6fe'] = 'γ'
_alnum['\U0001d6ff'] = 'δ'
_alnum['\U0001d700'] = 'ε'
_alnum['\U0001d701'] = 'ζ'
_alnum['\U0001d702'] = 'η'
_alnum['\U0001d703'] = 'θ'
_alnum['\U0001d704'] = 'ι'
_alnum['\U0001d705'] = 'κ'
_alnum['\U0001d706'] = 'λ'
_alnum['\U0001d707'] = 'μ'
_alnum['\U0001d708'] = 'ν'
_alnum['\U0001d709'] = 'ξ'
_alnum['\U0001d70a'] = 'ο'
_alnum['\U0001d70b'] = 'π'
_alnum['\U0001d70c'] = 'ρ'
_alnum['\U0001d70d'] = 'ς'
_alnum['\U0001d70e'] = 'σ'
_alnum['\U0001d70f'] = 'τ'
_alnum['\U0001d710'] = 'υ'
_alnum['\U0001d711'] = 'φ'
_alnum['\U0001d712'] = 'χ'
_alnum['\U0001d713'] = 'ψ'
_alnum['\U0001d714'] = 'ω'
_alnum['\U0001d715'] = '∂'
_alnum['\U0001d716'] = 'ϵ'
_alnum['\U0001d717'] = 'ϑ'
_alnum['\U0001d718'] = 'ϰ'
_alnum['\U0001d719'] = 'ϕ'
_alnum['\U0001d71a'] = 'ϱ'
_alnum['\U0001d71b'] = 'ϖ'
_alnum['\U0001d71c'] = 'Α'
_alnum['\U0001d71d'] = 'Β'
_alnum['\U0001d71e'] = 'Γ'
_alnum['\U0001d71f'] = 'Δ'
_alnum['\U0001d720'] = 'Ε'
_alnum['\U0001d721'] = 'Ζ'
_alnum['\U0001d722'] = 'Η'
_alnum['\U0001d723'] = 'ϴ'
_alnum['\U0001d724'] = 'Ι'
_alnum['\U0001d725'] = 'Κ'
_alnum['\U0001d726'] = 'Λ'
_alnum['\U0001d727'] = 'Μ'
_alnum['\U0001d728'] = 'Ν'
_alnum['\U0001d729'] = 'Ξ'
_alnum['\U0001d72a'] = 'Ο'
_alnum['\U0001d72b'] = 'Π'
_alnum['\U0001d72c'] = 'Ρ'
_alnum['\U0001d72d'] = 'ϴ'
_alnum['\U0001d72e'] = 'Σ'
_alnum['\U0001d72f'] = 'Τ'
_alnum['\U0001d730'] = 'Υ'
_alnum['\U0001d731'] = 'Φ'
_alnum['\U0001d732'] = 'Χ'
_alnum['\U0001d733'] = 'Ψ'
_alnum['\U0001d734'] = 'Ω'
_alnum['\U0001d735'] = '∇'
_alnum['\U0001d736'] = 'α'
_alnum['\U0001d737'] = 'β'
_alnum['\U0001d738'] = 'γ'
_alnum['\U0001d739'] = 'δ'
_alnum['\U0001d73a'] = 'ε'
_alnum['\U0001d73b'] = 'ζ'
_alnum['\U0001d73c'] = 'η'
_alnum['\U0001d73d'] = 'θ'
_alnum['\U0001d73e'] = 'ι'
_alnum['\U0001d73f'] = 'κ'
_alnum['\U0001d740'] = 'λ'
_alnum['\U0001d741'] = 'μ'
_alnum['\U0001d742'] = 'ν'
_alnum['\U0001d743'] = 'ξ'
_alnum['\U0001d744'] = 'ο'
_alnum['\U0001d745'] = 'π'
_alnum['\U0001d746'] = 'ρ'
_alnum['\U0001d747'] = 'ς'
_alnum['\U0001d748'] = 'σ'
_alnum['\U0001d749'] = 'τ'
_alnum['\U0001d74a'] = 'υ'
_alnum['\U0001d74b'] = 'φ'
_alnum['\U0001d74c'] = 'χ'
_alnum['\U0001d74d'] = 'ψ'
_alnum['\U0001d74e'] = 'ω'
_alnum['\U0001d74f'] = '∂'
_alnum['\U0001d750'] = 'ϵ'
_alnum['\U0001d751'] = 'ϑ'
_alnum['\U0001d752'] = 'ϰ'
_alnum['\U0001d753'] = 'ϕ'
_alnum['\U0001d754'] = 'ϱ'
_alnum['\U0001d755'] = 'ϖ'
_alnum['\U0001d756'] = 'Α'
_alnum['\U0001d757'] = 'Β'
_alnum['\U0001d758'] = 'Γ'
_alnum['\U0001d759'] = 'Δ'
_alnum['\U0001d75a'] = 'Ε'
_alnum['\U0001d75b'] = 'Ζ'
_alnum['\U0001d75c'] = 'Η'
_alnum['\U0001d75d'] = 'ϴ'
_alnum['\U0001d75e'] = 'Ι'
_alnum['\U0001d75f'] = 'Κ'
_alnum['\U0001d760'] = 'Λ'
_alnum['\U0001d761'] = 'Μ'
_alnum['\U0001d762'] = 'Ν'
_alnum['\U0001d763'] = 'Ξ'
_alnum['\U0001d764'] = 'Ο'
_alnum['\U0001d765'] = 'Π'
_alnum['\U0001d766'] = 'Ρ'
_alnum['\U0001d767'] = 'ϴ'
_alnum['\U0001d768'] = 'Σ'
_alnum['\U0001d769'] = 'Τ'
_alnum['\U0001d76a'] = 'Υ'
_alnum['\U0001d76b'] = 'Φ'
_alnum['\U0001d76c'] = 'Χ'
_alnum['\U0001d76d'] = 'Ψ'
_alnum['\U0001d76e'] = 'Ω'
_alnum['\U0001d76f'] = '∇'
_alnum['\U0001d770'] = 'α'
_alnum['\U0001d771'] = 'β'
_alnum['\U0001d772'] = 'γ'
_alnum['\U0001d773'] = 'δ'
_alnum['\U0001d774'] = 'ε'
_alnum['\U0001d775'] = 'ζ'
_alnum['\U0001d776'] = 'η'
_alnum['\U0001d777'] = 'θ'
_alnum['\U0001d778'] = 'ι'
_alnum['\U0001d779'] = 'κ'
_alnum['\U0001d77a'] = 'λ'
_alnum['\U0001d77b'] = 'μ'
_alnum['\U0001d77c'] = 'ν'
_alnum['\U0001d77d'] = 'ξ'
_alnum['\U0001d77e'] = 'ο'
_alnum['\U0001d77f'] = 'π'
_alnum['\U0001d780'] = 'ρ'
_alnum['\U0001d781'] = 'ς'
_alnum['\U0001d782'] = 'σ'
_alnum['\U0001d783'] = 'τ'
_alnum['\U0001d784'] = 'υ'
_alnum['\U0001d785'] = 'φ'
_alnum['\U0001d786'] = 'χ'
_alnum['\U0001d787'] = 'ψ'
_alnum['\U0001d788'] = 'ω'
_alnum['\U0001d789'] = '∂'
_alnum['\U0001d78a'] = 'ϵ'
_alnum['\U0001d78b'] = 'ϑ'
_alnum['\U0001d78c'] = 'ϰ'
_alnum['\U0001d78d'] = 'ϕ'
_alnum['\U0001d78e'] = 'ϱ'
_alnum['\U0001d78f'] = 'ϖ'
_alnum['\U0001d790'] = 'Α'
_alnum['\U0001d791'] = 'Β'
_alnum['\U0001d792'] = 'Γ'
_alnum['\U0001d793'] = 'Δ'
_alnum['\U0001d794'] = 'Ε'
_alnum['\U0001d795'] = 'Ζ'
_alnum['\U0001d796'] = 'Η'
_alnum['\U0001d797'] = 'ϴ'
_alnum['\U0001d798'] = 'Ι'
_alnum['\U0001d799'] = 'Κ'
_alnum['\U0001d79a'] = 'Λ'
_alnum['\U0001d79b'] = 'Μ'
_alnum['\U0001d79c'] = 'Ν'
_alnum['\U0001d79d'] = 'Ξ'
_alnum['\U0001d79e'] = 'Ο'
_alnum['\U0001d79f'] = 'Π'
_alnum['\U0001d7a0'] = 'Ρ'
_alnum['\U0001d7a1'] = 'ϴ'
_alnum['\U0001d7a2'] = 'Σ'
_alnum['\U0001d7a3'] = 'Τ'
_alnum['\U0001d7a4'] = 'Υ'
_alnum['\U0001d7a5'] = 'Φ'
_alnum['\U0001d7a6'] = 'Χ'
_alnum['\U0001d7a7'] = 'Ψ'
_alnum['\U0001d7a8'] = 'Ω'
_alnum['\U0001d7a9'] = '∇'
_alnum['\U0001d7aa'] = 'α'
_alnum['\U0001d7ab'] = 'β'
_alnum['\U0001d7ac'] = 'γ'
_alnum['\U0001d7ad'] = 'δ'
_alnum['\U0001d7ae'] = 'ε'
_alnum['\U0001d7af'] = 'ζ'
_alnum['\U0001d7b0'] = 'η'
_alnum['\U0001d7b1'] = 'θ'
_alnum['\U0001d7b2'] = 'ι'
_alnum['\U0001d7b3'] = 'κ'
_alnum['\U0001d7b4'] = 'λ'
_alnum['\U0001d7b5'] = 'μ'
_alnum['\U0001d7b6'] = 'ν'
_alnum['\U0001d7b7'] = 'ξ'
_alnum['\U0001d7b8'] = 'ο'
_alnum['\U0001d7b9'] = 'π'
_alnum['\U0001d7ba'] = 'ρ'
_alnum['\U0001d7bb'] = 'ς'
_alnum['\U0001d7bc'] = 'σ'
_alnum['\U0001d7bd'] = 'τ'
_alnum['\U0001d7be'] = 'υ'
_alnum['\U0001d7bf'] = 'φ'
_alnum['\U0001d7c0'] = 'χ'
_alnum['\U0001d7c1'] = 'ψ'
_alnum['\U0001d7c2'] = 'ω'
_alnum['\U0001d7c3'] = '∂'
_alnum['\U0001d7c4'] = 'ϵ'
_alnum['\U0001d7c5'] = 'ϑ'
_alnum['\U0001d7c6'] = 'ϰ'
_alnum['\U0001d7c7'] = 'ϕ'
_alnum['\U0001d7c8'] = 'ϱ'
_alnum['\U0001d7c9'] = 'ϖ'
_alnum['\U0001d7ca'] = 'Ϝ'
_alnum['\U0001d7cb'] = 'ϝ'
_alnum['\U0001d7ce'] = '0'
_alnum['\U0001d7cf'] = '1'
_alnum['\U0001d7d0'] = '2'
_alnum['\U0001d7d1'] = '3'
_alnum['\U0001d7d2'] = '4'
_alnum['\U0001d7d3'] = '5'
_alnum['\U0001d7d4'] = '6'
_alnum['\U0001d7d5'] = '7'
_alnum['\U0001d7d6'] = '8'
_alnum['\U0001d7d7'] = '9'
_alnum['\U0001d7d8'] = '0'
_alnum['\U0001d7d9'] = '1'
_alnum['\U0001d7da'] = '2'
_alnum['\U0001d7db'] = '3'
_alnum['\U0001d7dc'] = '4'
_alnum['\U0001d7dd'] = '5'
_alnum['\U0001d7de'] = '6'
_alnum['\U0001d7df'] = '7'
_alnum['\U0001d7e0'] = '8'
_alnum['\U0001d7e1'] = '9'
_alnum['\U0001d7e2'] = '0'
_alnum['\U0001d7e3'] = '1'
_alnum['\U0001d7e4'] = '2'
_alnum['\U0001d7e5'] = '3'
_alnum['\U0001d7e6'] = '4'
_alnum['\U0001d7e7'] = '5'
_alnum['\U0001d7e8'] = '6'
_alnum['\U0001d7e9'] = '7'
_alnum['\U0001d7ea'] = '8'
_alnum['\U0001d7eb'] = '9'
_alnum['\U0001d7ec'] = '0'
_alnum['\U0001d7ed'] = '1'
_alnum['\U0001d7ee'] = '2'
_alnum['\U0001d7ef'] = '3'
_alnum['\U0001d7f0'] = '4'
_alnum['\U0001d7f1'] = '5'
_alnum['\U0001d7f2'] = '6'
_alnum['\U0001d7f3'] = '7'
_alnum['\U0001d7f4'] = '8'
_alnum['\U0001d7f5'] = '9'
_alnum['\U0001d7f6'] = '0'
_alnum['\U0001d7f7'] = '1'
_alnum['\U0001d7f8'] = '2'
_alnum['\U0001d7f9'] = '3'
_alnum['\U0001d7fa'] = '4'
_alnum['\U0001d7fb'] = '5'
_alnum['\U0001d7fc'] = '6'
_alnum['\U0001d7fd'] = '7'
_alnum['\U0001d7fe'] = '8'
_alnum['\U0001d7ff'] = '9'

_bold = range(0x1d400, 0x1d434)
_italic = range(0x1d434, 0x1d468)
_boldItalic = range(0x1d468, 0x1d49c)
_script = range(0x1d49c, 0x1d4d0)
_boldScript = range(0x1d4d0, 0x1d504)
_fraktur = range(0x1d504, 0x1d538)
_doubleStruck = range(0x1d538, 0x1d56c)
_boldFraktur = range(0x1d56c, 0x1d5a0)
_sansSerif = range(0x1d5a0, 0x1d5d4)
_sansSerifBold = range(0x1d5d4, 0x1d608)
_sansSerifItalic = range(0x1d608, 0x1d63c)
_sansSerifBoldItalic = range(0x1d63c, 0x1d670)
_monospace = range(0x1d670, 0x1d6a4)
_dotless = range(0x1d6a4, 0x1d6a8)
_boldGreek = range(0x1d6a8, 0x1d6e2)
_italicGreek = range(0x1d6e2, 0x1d71c)
_boldItalicGreek = range(0x1d71c, 0x1d756)
_sansSerifBoldGreek = range(0x1d756, 0x1d790)
_sansSerifBoldItalicGreek = range(0x1d790, 0x1d7ca)
_boldGreekDigamma = range(0x1d7ca, 0x1d7cc)
_boldDigits = range(0x1d7ce, 0x1d7d8)
_doubleStruckDigits = range(0x1d7d8, 0x1d7e2)
_sansSerifDigits = range(0x1d7e2, 0x1d7ec)
_sansSerifBoldDigits = range(0x1d7ec, 0x1d7f6)
_monospaceDigits = range(0x1d7f6, 0x1d800)
_otherDoubleStruck = [0x2102, 0x210d, 0x2115, 0x2119, 0x211a, 0x211d, 0x2124]
_otherFraktur = [0x212d, 0x210c, 0x2111, 0x211c, 0x2128]
_otherItalic = [0x210e]
_otherScript = [0x212c, 0x2130, 0x2131, 0x210b, 0x2110, 0x2112, 0x2133, 0x211b, 0x212f, 0x210a, 0x2134]

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
BOLD = C_('math symbol', 'bold %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
ITALIC = C_('math symbol', 'italic %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
BOLD_ITALIC = C_('math symbol', 'bold italic %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
SCRIPT = C_('math symbol', 'script %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
BOLD_SCRIPT = C_('math symbol', 'bold script %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
FRAKTUR = C_('math symbol', 'fraktur %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
DOUBLE_STRUCK = C_('math symbol', 'double-struck %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
BOLD_FRAKTUR = C_('math symbol', 'bold fraktur %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
SANS_SERIF = C_('math symbol', 'sans-serif %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
SANS_SERIF_BOLD = C_('math symbol', 'sans-serif bold %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
SANS_SERIF_ITALIC = C_('math symbol', 'sans-serif italic %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
SANS_SERIF_BOLD_ITALIC = C_('math symbol', 'sans-serif bold italic %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
MONOSPACE = C_('math symbol', 'monospace %s')

# Translators: Unicode has a large set of characters consisting of a common
# alphanumeric symbol and a style. For instance, character 1D400 is a bold A,
# 1D468 is a bold italic A, 1D4D0 is a bold script A,, etc., etc. These styles
# can have specific meanings in mathematics and thus should be spoken along
# with the alphanumeric character. However, given the vast quantity of these
# characters, string substitution is being used with the substituted string
# being a single alphanumeric character. The full set of symbols can be found
# at http://www.unicode.org/charts/PDF/U1D400.pdf.
DOTLESS = C_('math symbol', 'dotless %s')

# Translators: this is the spoken representation for the character '←' (U+2190)
_arrows['\u2190'] = C_('math symbol', 'left arrow')

# Translators: this is the spoken representation for the character '↑' (U+2191)
_arrows['\u2191'] = C_('math symbol', 'up arrow')

# Translators: this is the spoken representation for the character '→' (U+2192)
_arrows['\u2192'] = C_('math symbol', 'right arrow')

# Translators: this is the spoken representation for the character '↓' (U+2193)
_arrows['\u2193'] = C_('math symbol', 'down arrow')

# Translators: this is the spoken representation for the character '↔' (U+2194)
_arrows['\u2194'] = C_('math symbol', 'left right arrow')

# Translators: this is the spoken representation for the character '↕' (U+2195)
_arrows['\u2195'] = C_('math symbol', 'up down arrow')

# Translators: this is the spoken representation for the character '↖' (U+2196)
_arrows['\u2196'] = C_('math symbol', 'north west arrow')

# Translators: this is the spoken representation for the character '↗' (U+2197)
_arrows['\u2197'] = C_('math symbol', 'north east arrow')

# Translators: this is the spoken representation for the character '↘' (U+2198)
_arrows['\u2198'] = C_('math symbol', 'south east arrow')

# Translators: this is the spoken representation for the character '↤' (U+21a4)
_arrows['\u21a4'] = C_('math symbol', 'left arrow from bar')

# Translators: this is the spoken representation for the character '↥' (U+21a5)
_arrows['\u21a5'] = C_('math symbol', 'up arrow from bar')

# Translators: this is the spoken representation for the character '↦' (U+21a6)
_arrows['\u21a6'] = C_('math symbol', 'right arrow from bar')

# Translators: this is the spoken representation for the character '↧' (U+21a7)
_arrows['\u21a7'] = C_('math symbol', 'down arrow from bar')

# Translators: this is the spoken representation for the character '⇐' (U+21d0)
_arrows['\u21d0'] = C_('math symbol', 'left double arrow')

# Translators: this is the spoken representation for the character '⇑' (U+21d1)
_arrows['\u21d1'] = C_('math symbol', 'up double arrow')

# Translators: this is the spoken representation for the character '⇒' (U+21d2)
_arrows['\u21d2'] = C_('math symbol', 'right double arrow')

# Translators: this is the spoken representation for the character '⇓' (U+21d3)
_arrows['\u21d3'] = C_('math symbol', 'down double arrow')

# Translators: this is the spoken representation for the character '⇔' (U+21d4)
_arrows['\u21d4'] = C_('math symbol', 'left right double arrow')

# Translators: this is the spoken representation for the character '⇕' (U+21d5)
_arrows['\u21d5'] = C_('math symbol', 'up down double arrow')

# Translators: this is the spoken representation for the character '⇖' (U+21d6)
_arrows['\u21d6'] = C_('math symbol', 'north west double arrow')

# Translators: this is the spoken representation for the character '⇗' (U+21d7)
_arrows['\u21d7'] = C_('math symbol', 'north east double arrow')

# Translators: this is the spoken representation for the character '⇘' (U+21d8)
_arrows['\u21d8'] = C_('math symbol', 'south east double arrow')

# Translators: this is the spoken representation for the character '⇙' (U+21d9)
_arrows['\u21d9'] = C_('math symbol', 'south west double arrow')

# Translators: this is the spoken representation for the character '➔' (U+2794)
_arrows['\u2794'] = C_('math symbol', 'right-pointing arrow')

# Translators: this is the spoken representation for the character '➢' (U+27a2)
_arrows['\u27a2'] = C_('math symbol', 'right-pointing arrowhead')

# Translators: this is the spoken word for the character '-' (U+002d) when used
# as a MathML operator.
_operators["\u002d"] = C_('math symbol', 'minus')

# Translators: this is the spoken word for the character '<' (U+003c) when used
# as a MathML operator.
_operators["\u003c"] = C_('math symbol', 'less than')

# Translators: this is the spoken word for the character '>' (U+003e) when used
# as a MathML operator.
_operators["\u003e"] = C_('math symbol', 'greater than')

# Translators: this is the spoken word for the character '^' (U+005e) when used
# as a MathML operator.
_operators['\u005e'] = C_('math symbol', 'circumflex')

# Translators: this is the spoken word for the character 'ˇ' (U+02c7) when used
# as a MathML operator.
_operators['\u02c7'] = C_('math symbol', 'háček')

# Translators: this is the spoken word for the character '˘' (U+02d8) when used
# as a MathML operator.
_operators['\u02d8'] = C_('math symbol', 'breve')

# Translators: this is the spoken word for the character '˙' (U+02d9) when used
# as a MathML operator.
_operators['\u02d9'] = C_('math symbol', 'dot')

# Translators: this is the spoken word for the character '‖' (U+2016) when used
# as a MathML operator.
_operators['\u2016'] = C_('math symbol', 'double vertical line')

# Translators: this is the spoken representation for the character '…' (U+2026)
_operators['\u2026'] = C_('math symbol', 'horizontal ellipsis')

# Translators: this is the spoken representation for the character '∀' (U+2200)
_operators['\u2200'] = C_('math symbol', 'for all')

# Translators: this is the spoken representation for the character '∁' (U+2201)
_operators['\u2201'] = C_('math symbol', 'complement')

# Translators: this is the spoken representation for the character '∂' (U+2202)
_operators['\u2202'] = C_('math symbol', 'partial differential')

# Translators: this is the spoken representation for the character '∃' (U+2203)
_operators['\u2203'] = C_('math symbol', 'there exists')

# Translators: this is the spoken representation for the character '∄' (U+2204)
_operators['\u2204'] = C_('math symbol', 'there does not exist')

# Translators: this is the spoken representation for the character '∅' (U+2205)
_operators['\u2205'] = C_('math symbol', 'empty set')

# Translators: this is the spoken representation for the character '∆' (U+2206)
_operators['\u2206'] = C_('math symbol', 'increment')

# Translators: this is the spoken representation for the character '∇' (U+2207)
_operators['\u2207'] = C_('math symbol', 'nabla')

# Translators: this is the spoken representation for the character '∈' (U+2208)
_operators['\u2208'] = C_('math symbol', 'element of')

# Translators: this is the spoken representation for the character '∉' (U+2209)
_operators['\u2209'] = C_('math symbol', 'not an element of')

# Translators: this is the spoken representation for the character '∊' (U+220a)
_operators['\u220a'] = C_('math symbol', 'small element of')

# Translators: this is the spoken representation for the character '∋' (U+220b)
_operators['\u220b'] = C_('math symbol', 'contains as a member')

# Translators: this is the spoken representation for the character '∌' (U+220c)
_operators['\u220c'] = C_('math symbol', 'does not contain as a member')

# Translators: this is the spoken representation for the character '∍' (U+220d)
_operators['\u220d'] = C_('math symbol', 'small contains as a member')

# Translators: this is the spoken representation for the character '∎' (U+220e)
_operators['\u220e'] = C_('math symbol', 'end of proof')

# Translators: this is the spoken representation for the character '∏' (U+220f)
_operators['\u220f'] = C_('math symbol', 'product')

# Translators: this is the spoken representation for the character '∐' (U+2210)
_operators['\u2210'] = C_('math symbol', 'coproduct')

# Translators: this is the spoken representation for the character '∑' (U+2211)
_operators['\u2211'] = C_('math symbol', 'sum')

# Translators: this is the spoken representation for the character '−' (U+2212)
_operators['\u2212'] = C_('math symbol', 'minus')

# Translators: this is the spoken representation for the character '∓' (U+2213)
_operators['\u2213'] = C_('math symbol', 'minus or plus')

# Translators: this is the spoken representation for the character '∔' (U+2214)
_operators['\u2214'] = C_('math symbol', 'dot plus')

# Translators: this is the spoken representation for the character '∕' (U+2215)
_operators['\u2215'] = C_('math symbol', 'division slash')

# Translators: this is the spoken representation for the character '∖' (U+2216)
_operators['\u2216'] = C_('math symbol', 'set minus')

# Translators: this is the spoken representation for the character '∗' (U+2217)
_operators['\u2217'] = C_('math symbol', 'asterisk operator')

# Translators: this is the spoken representation for the character '∘' (U+2218)
_operators['\u2218'] = C_('math symbol', 'ring operator')

# Translators: this is the spoken representation for the character '∙' (U+2219)
_operators['\u2219'] = C_('math symbol', 'bullet operator')

# Translators: this is the spoken representation for the character '√' (U+221a)
_operators['\u221a'] = C_('math symbol', 'square root')

# Translators: this is the spoken representation for the character '∛' (U+221b)
_operators['\u221b'] = C_('math symbol', 'cube root')

# Translators: this is the spoken representation for the character '∜' (U+221c)
_operators['\u221c'] = C_('math symbol', 'fourth root')

# Translators: this is the spoken representation for the character '∝' (U+221d)
_operators['\u221d'] = C_('math symbol', 'proportional to')

# Translators: this is the spoken representation for the character '∞' (U+221e)
_operators['\u221e'] = C_('math symbol', 'infinity')

# Translators: this is the spoken representation for the character '∟' (U+221f)
_operators['\u221f'] = C_('math symbol', 'right angle')

# Translators: this is the spoken representation for the character '∠' (U+2220)
_operators['\u2220'] = C_('math symbol', 'angle')

# Translators: this is the spoken representation for the character '∡' (U+2221)
_operators['\u2221'] = C_('math symbol', 'measured angle')

# Translators: this is the spoken representation for the character '∢' (U+2222)
_operators['\u2222'] = C_('math symbol', 'spherical angle')

# Translators: this is the spoken representation for the character '∣' (U+2223)
_operators['\u2223'] = C_('math symbol', 'divides')

# Translators: this is the spoken representation for the character '∤' (U+2224)
_operators['\u2224'] = C_('math symbol', 'does not divide')

# Translators: this is the spoken representation for the character '∥' (U+2225)
_operators['\u2225'] = C_('math symbol', 'parallel to')

# Translators: this is the spoken representation for the character '∦' (U+2226)
_operators['\u2226'] = C_('math symbol', 'not parallel to')

# Translators: this is the spoken representation for the character '∧' (U+2227)
_operators['\u2227'] = C_('math symbol', 'logical and')

# Translators: this is the spoken representation for the character '∨' (U+2228)
_operators['\u2228'] = C_('math symbol', 'logical or')

# Translators: this is the spoken representation for the character '∩' (U+2229)
_operators['\u2229'] = C_('math symbol', 'intersection')

# Translators: this is the spoken representation for the character '∪' (U+222a)
_operators['\u222a'] = C_('math symbol', 'union')

# Translators: this is the spoken representation for the character '∫' (U+222b)
_operators['\u222b'] = C_('math symbol', 'integral')

# Translators: this is the spoken representation for the character '∬' (U+222c)
_operators['\u222c'] = C_('math symbol', 'double integral')

# Translators: this is the spoken representation for the character '∭' (U+222d)
_operators['\u222d'] = C_('math symbol', 'triple integral')

# Translators: this is the spoken representation for the character '∮' (U+222e)
_operators['\u222e'] = C_('math symbol', 'contour integral')

# Translators: this is the spoken representation for the character '∯' (U+222f)
_operators['\u222f'] = C_('math symbol', 'surface integral')

# Translators: this is the spoken representation for the character '∰' (U+2230)
_operators['\u2230'] = C_('math symbol', 'volume integral')

# Translators: this is the spoken representation for the character '∱' (U+2231)
_operators['\u2231'] = C_('math symbol', 'clockwise integral')

# Translators: this is the spoken representation for the character '∲' (U+2232)
_operators['\u2232'] = C_('math symbol', 'clockwise contour integral')

# Translators: this is the spoken representation for the character '∳' (U+2233)
_operators['\u2233'] = C_('math symbol', 'anticlockwise contour integral')

# Translators: this is the spoken representation for the character '∴' (U+2234)
_operators['\u2234'] = C_('math symbol', 'therefore')

# Translators: this is the spoken representation for the character '∵' (U+2235)
_operators['\u2235'] = C_('math symbol', 'because')

# Translators: this is the spoken representation for the character '∶' (U+2236)
_operators['\u2236'] = C_('math symbol', 'ratio')

# Translators: this is the spoken representation for the character '∷' (U+2237)
_operators['\u2237'] = C_('math symbol', 'proportion')

# Translators: this is the spoken representation for the character '∸' (U+2238)
_operators['\u2238'] = C_('math symbol', 'dot minus')

# Translators: this is the spoken representation for the character '∹' (U+2239)
_operators['\u2239'] = C_('math symbol', 'excess')

# Translators: this is the spoken representation for the character '∺' (U+223a)
_operators['\u223a'] = C_('math symbol', 'geometric proportion')

# Translators: this is the spoken representation for the character '∻' (U+223b)
_operators['\u223b'] = C_('math symbol', 'homothetic')

# Translators: this is the spoken representation for the character '∼' (U+223c)
_operators['\u223c'] = C_('math symbol', 'tilde')

# Translators: this is the spoken representation for the character '∽' (U+223d)
_operators['\u223d'] = C_('math symbol', 'reversed tilde')

# Translators: this is the spoken representation for the character '∾' (U+223e)
_operators['\u223e'] = C_('math symbol', 'inverted lazy S')

# Translators: this is the spoken representation for the character '∿' (U+223f)
_operators['\u223f'] = C_('math symbol', 'sine wave')

# Translators: this is the spoken representation for the character '≀' (U+2240)
_operators['\u2240'] = C_('math symbol', 'wreath product')

# Translators: this is the spoken representation for the character '≁' (U+2241)
_operators['\u2241'] = C_('math symbol', 'not tilde')

# Translators: this is the spoken representation for the character '≂' (U+2242)
_operators['\u2242'] = C_('math symbol', 'minus tilde')

# Translators: this is the spoken representation for the character '≃' (U+2243)
_operators['\u2243'] = C_('math symbol', 'asymptotically equal to')

# Translators: this is the spoken representation for the character '≄' (U+2244)
_operators['\u2244'] = C_('math symbol', 'not asymptotically equal to')

# Translators: this is the spoken representation for the character '≅' (U+2245)
_operators['\u2245'] = C_('math symbol', 'approximately equal to')

# Translators: this is the spoken representation for the character '≆' (U+2246)
_operators['\u2246'] = C_('math symbol', 'approximately but not actually equal to')

# Translators: this is the spoken representation for the character '≇' (U+2247)
_operators['\u2247'] = C_('math symbol', 'neither approximately nor actually equal to')

# Translators: this is the spoken representation for the character '≈' (U+2248)
_operators['\u2248'] = C_('math symbol', 'almost equal to')

# Translators: this is the spoken representation for the character '≉' (U+2249)
_operators['\u2249'] = C_('math symbol', 'not almost equal to')

# Translators: this is the spoken representation for the character '≊' (U+224a)
_operators['\u224a'] = C_('math symbol', 'almost equal or equal to')

# Translators: this is the spoken representation for the character '≋' (U+224b)
_operators['\u224b'] = C_('math symbol', 'triple tilde')

# Translators: this is the spoken representation for the character '≌' (U+224c)
_operators['\u224c'] = C_('math symbol', 'all equal to')

# Translators: this is the spoken representation for the character '≍' (U+224d)
_operators['\u224d'] = C_('math symbol', 'equivalent to')

# Translators: this is the spoken representation for the character '≎' (U+224e)
_operators['\u224e'] = C_('math symbol', 'geometrically equivalent to')

# Translators: this is the spoken representation for the character '≏' (U+224f)
_operators['\u224f'] = C_('math symbol', 'difference between')

# Translators: this is the spoken representation for the character '≐' (U+2250)
_operators['\u2250'] = C_('math symbol', 'approaches the limit')

# Translators: this is the spoken representation for the character '≑' (U+2251)
_operators['\u2251'] = C_('math symbol', 'geometrically equal to')

# Translators: this is the spoken representation for the character '≒' (U+2252)
_operators['\u2252'] = C_('math symbol', 'approximately equal to or the image of')

# Translators: this is the spoken representation for the character '≓' (U+2253)
_operators['\u2253'] = C_('math symbol', 'image of or approximately equal to')

# Translators: this is the spoken representation for the character '≔' (U+2254)
_operators['\u2254'] = C_('math symbol', 'colon equals')

# Translators: this is the spoken representation for the character '≕' (U+2255)
_operators['\u2255'] = C_('math symbol', 'equals colon')

# Translators: this is the spoken representation for the character '≖' (U+2256)
_operators['\u2256'] = C_('math symbol', 'ring in equal to')

# Translators: this is the spoken representation for the character '≗' (U+2257)
_operators['\u2257'] = C_('math symbol', 'ring equal to')

# Translators: this is the spoken representation for the character '≘' (U+2258)
_operators['\u2258'] = C_('math symbol', 'corresponds to')

# Translators: this is the spoken representation for the character '≙' (U+2259)
_operators['\u2259'] = C_('math symbol', 'estimates')

# Translators: this is the spoken representation for the character '≚' (U+225a)
_operators['\u225a'] = C_('math symbol', 'equiangular to')

# Translators: this is the spoken representation for the character '≛' (U+225b)
_operators['\u225b'] = C_('math symbol', 'star equals')

# Translators: this is the spoken representation for the character '≜' (U+225c)
_operators['\u225c'] = C_('math symbol', 'delta equal to')

# Translators: this is the spoken representation for the character '≝' (U+225d)
_operators['\u225d'] = C_('math symbol', 'equal to by definition')

# Translators: this is the spoken representation for the character '≞' (U+225e)
_operators['\u225e'] = C_('math symbol', 'measured by')

# Translators: this is the spoken representation for the character '≟' (U+225f)
_operators['\u225f'] = C_('math symbol', 'questioned equal to')

# Translators: this is the spoken representation for the character '≠' (U+2260)
_operators['\u2260'] = C_('math symbol', 'not equal to')

# Translators: this is the spoken representation for the character '≡' (U+2261)
_operators['\u2261'] = C_('math symbol', 'identical to')

# Translators: this is the spoken representation for the character '≢' (U+2262)
_operators['\u2262'] = C_('math symbol', 'not identical to')

# Translators: this is the spoken representation for the character '≣' (U+2263)
_operators['\u2263'] = C_('math symbol', 'strictly equivalent to')

# Translators: this is the spoken representation for the character '≤' (U+2264)
_operators['\u2264'] = C_('math symbol', 'less than or equal to')

# Translators: this is the spoken representation for the character '≥' (U+2265)
_operators['\u2265'] = C_('math symbol', 'greater than or equal to')

# Translators: this is the spoken representation for the character '≦' (U+2266)
_operators['\u2266'] = C_('math symbol', 'less than over equal to')

# Translators: this is the spoken representation for the character '≧' (U+2267)
_operators['\u2267'] = C_('math symbol', 'greater than over equal to')

# Translators: this is the spoken representation for the character '≨' (U+2268)
_operators['\u2268'] = C_('math symbol', 'less than but not equal to')

# Translators: this is the spoken representation for the character '≩' (U+2269)
_operators['\u2269'] = C_('math symbol', 'greater than but not equal to')

# Translators: this is the spoken representation for the character '≪' (U+226a)
_operators['\u226a'] = C_('math symbol', 'much less than')

# Translators: this is the spoken representation for the character '≫' (U+226b)
_operators['\u226b'] = C_('math symbol', 'much greater than')

# Translators: this is the spoken representation for the character '≬' (U+226c)
_operators['\u226c'] = C_('math symbol', 'between')

# Translators: this is the spoken representation for the character '≭' (U+226d)
_operators['\u226d'] = C_('math symbol', 'not equivalent to')

# Translators: this is the spoken representation for the character '≮' (U+226e)
_operators['\u226e'] = C_('math symbol', 'not less than')

# Translators: this is the spoken representation for the character '≯' (U+226f)
_operators['\u226f'] = C_('math symbol', 'not greater than')

# Translators: this is the spoken representation for the character '≰' (U+2270)
_operators['\u2270'] = C_('math symbol', 'neither less than nor equal to')

# Translators: this is the spoken representation for the character '≱' (U+2271)
_operators['\u2271'] = C_('math symbol', 'neither greater than nor equal to')

# Translators: this is the spoken representation for the character '≲' (U+2272)
_operators['\u2272'] = C_('math symbol', 'less than or equivalent to')

# Translators: this is the spoken representation for the character '≳' (U+2273)
_operators['\u2273'] = C_('math symbol', 'greater than or equivalent to')

# Translators: this is the spoken representation for the character '≴' (U+2274)
_operators['\u2274'] = C_('math symbol', 'neither less than nor equivalent to')

# Translators: this is the spoken representation for the character '≵' (U+2275)
_operators['\u2275'] = C_('math symbol', 'neither greater than nor equivalent to')

# Translators: this is the spoken representation for the character '≶' (U+2276)
_operators['\u2276'] = C_('math symbol', 'less than or greater than')

# Translators: this is the spoken representation for the character '≷' (U+2277)
_operators['\u2277'] = C_('math symbol', 'greater than or less than')

# Translators: this is the spoken representation for the character '≸' (U+2278)
_operators['\u2278'] = C_('math symbol', 'neither less than nor greater than')

# Translators: this is the spoken representation for the character '≹' (U+2279)
_operators['\u2279'] = C_('math symbol', 'neither greater than nor less than')

# Translators: this is the spoken representation for the character '≺' (U+227a)
_operators['\u227a'] = C_('math symbol', 'precedes')

# Translators: this is the spoken representation for the character '≻' (U+227b)
_operators['\u227b'] = C_('math symbol', 'succeeds')

# Translators: this is the spoken representation for the character '≼' (U+227c)
_operators['\u227c'] = C_('math symbol', 'precedes or equal to')

# Translators: this is the spoken representation for the character '≽' (U+227d)
_operators['\u227d'] = C_('math symbol', 'succeeds or equal to')

# Translators: this is the spoken representation for the character '≾' (U+227e)
_operators['\u227e'] = C_('math symbol', 'precedes or equivalent to')

# Translators: this is the spoken representation for the character '≿' (U+227f)
_operators['\u227f'] = C_('math symbol', 'succeeds or equivalent to')

# Translators: this is the spoken representation for the character '⊀' (U+2280)
_operators['\u2280'] = C_('math symbol', 'does not precede')

# Translators: this is the spoken representation for the character '⊁' (U+2281)
_operators['\u2281'] = C_('math symbol', 'does not succeed')

# Translators: this is the spoken representation for the character '⊂' (U+2282)
_operators['\u2282'] = C_('math symbol', 'subset of')

# Translators: this is the spoken representation for the character '⊃' (U+2283)
_operators['\u2283'] = C_('math symbol', 'superset of')

# Translators: this is the spoken representation for the character '⊄' (U+2284)
_operators['\u2284'] = C_('math symbol', 'not a subset of')

# Translators: this is the spoken representation for the character '⊅' (U+2285)
_operators['\u2285'] = C_('math symbol', 'not a superset of')

# Translators: this is the spoken representation for the character '⊆' (U+2286)
_operators['\u2286'] = C_('math symbol', 'subset of or equal to')

# Translators: this is the spoken representation for the character '⊇' (U+2287)
_operators['\u2287'] = C_('math symbol', 'superset of or equal to')

# Translators: this is the spoken representation for the character '⊈' (U+2288)
_operators['\u2288'] = C_('math symbol', 'neither a subset of nor equal to')

# Translators: this is the spoken representation for the character '⊉' (U+2289)
_operators['\u2289'] = C_('math symbol', 'neither a superset of nor equal to')

# Translators: this is the spoken representation for the character '⊊' (U+228a)
_operators['\u228a'] = C_('math symbol', 'subset of with not equal to')

# Translators: this is the spoken representation for the character '⊋' (U+228b)
_operators['\u228b'] = C_('math symbol', 'superset of with not equal to')

# Translators: this is the spoken representation for the character '⊌' (U+228c)
_operators['\u228c'] = C_('math symbol', 'multiset')

# Translators: this is the spoken representation for the character '⊍' (U+228d)
_operators['\u228d'] = C_('math symbol', 'multiset multiplication')

# Translators: this is the spoken representation for the character '⊎' (U+228e)
_operators['\u228e'] = C_('math symbol', 'multiset union')

# Translators: this is the spoken representation for the character '⊏' (U+228f)
_operators['\u228f'] = C_('math symbol', 'square image of')

# Translators: this is the spoken representation for the character '⊐' (U+2290)
_operators['\u2290'] = C_('math symbol', 'square original of')

# Translators: this is the spoken representation for the character '⊑' (U+2291)
_operators['\u2291'] = C_('math symbol', 'square image of or equal to')

# Translators: this is the spoken representation for the character '⊒' (U+2292)
_operators['\u2292'] = C_('math symbol', 'square original of or equal to')

# Translators: this is the spoken representation for the character '⊓' (U+2293)
_operators['\u2293'] = C_('math symbol', 'square cap')

# Translators: this is the spoken representation for the character '⊔' (U+2294)
_operators['\u2294'] = C_('math symbol', 'square cup')

# Translators: this is the spoken representation for the character '⊕' (U+2295)
_operators['\u2295'] = C_('math symbol', 'circled plus')

# Translators: this is the spoken representation for the character '⊖' (U+2296)
_operators['\u2296'] = C_('math symbol', 'circled minus')

# Translators: this is the spoken representation for the character '⊗' (U+2297)
_operators['\u2297'] = C_('math symbol', 'circled times')

# Translators: this is the spoken representation for the character '⊘' (U+2298)
_operators['\u2298'] = C_('math symbol', 'circled division slash')

# Translators: this is the spoken representation for the character '⊙' (U+2299)
_operators['\u2299'] = C_('math symbol', 'circled dot operator')

# Translators: this is the spoken representation for the character '⊚' (U+229a)
_operators['\u229a'] = C_('math symbol', 'circled ring operator')

# Translators: this is the spoken representation for the character '⊛' (U+229b)
_operators['\u229b'] = C_('math symbol', 'circled asterisk operator')

# Translators: this is the spoken representation for the character '⊜' (U+229c)
_operators['\u229c'] = C_('math symbol', 'circled equals')

# Translators: this is the spoken representation for the character '⊝' (U+229d)
_operators['\u229d'] = C_('math symbol', 'circled dash')

# Translators: this is the spoken representation for the character '⊞' (U+229e)
_operators['\u229e'] = C_('math symbol', 'squared plus')

# Translators: this is the spoken representation for the character '⊟' (U+229f)
_operators['\u229f'] = C_('math symbol', 'squared minus')

# Translators: this is the spoken representation for the character '⊠' (U+22a0)
_operators['\u22a0'] = C_('math symbol', 'squared times')

# Translators: this is the spoken representation for the character '⊡' (U+22a1)
_operators['\u22a1'] = C_('math symbol', 'squared dot operator')

# Translators: this is the spoken representation for the character '⊢' (U+22a2)
_operators['\u22a2'] = C_('math symbol', 'right tack')

# Translators: this is the spoken representation for the character '⊣' (U+22a3)
_operators['\u22a3'] = C_('math symbol', 'left tack')

# Translators: this is the spoken representation for the character '⊤' (U+22a4)
_operators['\u22a4'] = C_('math symbol', 'down tack')

# Translators: this is the spoken representation for the character '⊥' (U+22a5)
_operators['\u22a5'] = C_('math symbol', 'up tack')

# Translators: this is the spoken representation for the character '⊦' (U+22a6)
_operators['\u22a6'] = C_('math symbol', 'assertion')

# Translators: this is the spoken representation for the character '⊧' (U+22a7)
_operators['\u22a7'] = C_('math symbol', 'models')

# Translators: this is the spoken representation for the character '⊨' (U+22a8)
_operators['\u22a8'] = C_('math symbol', 'true')

# Translators: this is the spoken representation for the character '⊩' (U+22a9)
_operators['\u22a9'] = C_('math symbol', 'forces')

# Translators: this is the spoken representation for the character '⊪' (U+22aa)
_operators['\u22aa'] = C_('math symbol', 'triple vertical bar right turnstile')

# Translators: this is the spoken representation for the character '⊫' (U+22ab)
_operators['\u22ab'] = C_('math symbol', 'double vertical bar double right turnstile')

# Translators: this is the spoken representation for the character '⊬' (U+22ac)
_operators['\u22ac'] = C_('math symbol', 'does not prove')

# Translators: this is the spoken representation for the character '⊭' (U+22ad)
_operators['\u22ad'] = C_('math symbol', 'not true')

# Translators: this is the spoken representation for the character '⊮' (U+22ae)
_operators['\u22ae'] = C_('math symbol', 'does not force')

# Translators: this is the spoken representation for the character '⊯' (U+22af)
_operators['\u22af'] = C_('math symbol', 'negated double vertical bar double right turnstile')

# Translators: this is the spoken representation for the character '⊰' (U+22b0)
_operators['\u22b0'] = C_('math symbol', 'precedes under relation')

# Translators: this is the spoken representation for the character '⊱' (U+22b1)
_operators['\u22b1'] = C_('math symbol', 'succeeds under relation')

# Translators: this is the spoken representation for the character '⊲' (U+22b2)
_operators['\u22b2'] = C_('math symbol', 'normal subgroup of')

# Translators: this is the spoken representation for the character '⊳' (U+22b3)
_operators['\u22b3'] = C_('math symbol', 'contains as normal subgroup')

# Translators: this is the spoken representation for the character '⊴' (U+22b4)
_operators['\u22b4'] = C_('math symbol', 'normal subgroup of or equal to')

# Translators: this is the spoken representation for the character '⊵' (U+22b5)
_operators['\u22b5'] = C_('math symbol', 'contains as normal subgroup of or equal to')

# Translators: this is the spoken representation for the character '⊶' (U+22b6)
_operators['\u22b6'] = C_('math symbol', 'original of')

# Translators: this is the spoken representation for the character '⊷' (U+22b7)
_operators['\u22b7'] = C_('math symbol', 'image of')

# Translators: this is the spoken representation for the character '⊸' (U+22b8)
_operators['\u22b8'] = C_('math symbol', 'multimap')

# Translators: this is the spoken representation for the character '⊹' (U+22b9)
_operators['\u22b9'] = C_('math symbol', 'hermitian conjugate matrix')

# Translators: this is the spoken representation for the character '⊺' (U+22ba)
_operators['\u22ba'] = C_('math symbol', 'intercalate')

# Translators: this is the spoken representation for the character '⊻' (U+22bb)
_operators['\u22bb'] = C_('math symbol', 'xor')

# Translators: this is the spoken representation for the character '⊼' (U+22bc)
_operators['\u22bc'] = C_('math symbol', 'nand')

# Translators: this is the spoken representation for the character '⊽' (U+22bd)
_operators['\u22bd'] = C_('math symbol', 'nor')

# Translators: this is the spoken representation for the character '⊾' (U+22be)
_operators['\u22be'] = C_('math symbol', 'right angle with arc')

# Translators: this is the spoken representation for the character '⊿' (U+22bf)
_operators['\u22bf'] = C_('math symbol', 'right triangle')

# Translators: this is the spoken representation for the character '⋀' (U+22c0)
_operators['\u22c0'] = C_('math symbol', 'logical and')

# Translators: this is the spoken representation for the character '⋁' (U+22c1)
_operators['\u22c1'] = C_('math symbol', 'logical or')

# Translators: this is the spoken representation for the character '⋂' (U+22c2)
_operators['\u22c2'] = C_('math symbol', 'intersection')

# Translators: this is the spoken representation for the character '⋃' (U+22c3)
_operators['\u22c3'] = C_('math symbol', 'union')

# Translators: this is the spoken representation for the character '⋄' (U+22c4)
_operators['\u22c4'] = C_('math symbol', 'diamond operator')

# Translators: this is the spoken representation for the character '⋅' (U+22c5)
_operators['\u22c5'] = C_('math symbol', 'dot operator')

# Translators: this is the spoken representation for the character '⋆' (U+22c6)
_operators['\u22c6'] = C_('math symbol', 'star operator')

# Translators: this is the spoken representation for the character '⋇' (U+22c7)
_operators['\u22c7'] = C_('math symbol', 'division times')

# Translators: this is the spoken representation for the character '⋈' (U+22c8)
_operators['\u22c8'] = C_('math symbol', 'bowtie')

# Translators: this is the spoken representation for the character '⋉' (U+22c9)
_operators['\u22c9'] = C_('math symbol', 'left normal factor semidirect product')

# Translators: this is the spoken representation for the character '⋊' (U+22ca)
_operators['\u22ca'] = C_('math symbol', 'right normal factor semidirect product')

# Translators: this is the spoken representation for the character '⋋' (U+22cb)
_operators['\u22cb'] = C_('math symbol', 'left semidirect product')

# Translators: this is the spoken representation for the character '⋌' (U+22cc)
_operators['\u22cc'] = C_('math symbol', 'right semidirect product')

# Translators: this is the spoken representation for the character '⋍' (U+22cd)
_operators['\u22cd'] = C_('math symbol', 'reversed tilde equals')

# Translators: this is the spoken representation for the character '⋎' (U+22ce)
_operators['\u22ce'] = C_('math symbol', 'curly logical or')

# Translators: this is the spoken representation for the character '⋏' (U+22cf)
_operators['\u22cf'] = C_('math symbol', 'curly logical and')

# Translators: this is the spoken representation for the character '⋐' (U+22d0)
_operators['\u22d0'] = C_('math symbol', 'double subset')

# Translators: this is the spoken representation for the character '⋑' (U+22d1)
_operators['\u22d1'] = C_('math symbol', 'double superset')

# Translators: this is the spoken representation for the character '⋒' (U+22d2)
_operators['\u22d2'] = C_('math symbol', 'double intersection')

# Translators: this is the spoken representation for the character '⋓' (U+22d3)
_operators['\u22d3'] = C_('math symbol', 'double union')

# Translators: this is the spoken representation for the character '⋔' (U+22d4)
_operators['\u22d4'] = C_('math symbol', 'pitchfork')

# Translators: this is the spoken representation for the character '⋕' (U+22d5)
_operators['\u22d5'] = C_('math symbol', 'equal and parallel to')

# Translators: this is the spoken representation for the character '⋖' (U+22d6)
_operators['\u22d6'] = C_('math symbol', 'less than with dot')

# Translators: this is the spoken representation for the character '⋗' (U+22d7)
_operators['\u22d7'] = C_('math symbol', 'greater than with dot')

# Translators: this is the spoken representation for the character '⋘' (U+22d8)
_operators['\u22d8'] = C_('math symbol', 'very much less than')

# Translators: this is the spoken representation for the character '⋙' (U+22d9)
_operators['\u22d9'] = C_('math symbol', 'very much greater than')

# Translators: this is the spoken representation for the character '⋚' (U+22da)
_operators['\u22da'] = C_('math symbol', 'less than equal to or greater than')

# Translators: this is the spoken representation for the character '⋛' (U+22db)
_operators['\u22db'] = C_('math symbol', 'greater than equal to or less than')

# Translators: this is the spoken representation for the character '⋜' (U+22dc)
_operators['\u22dc'] = C_('math symbol', 'equal to or less than')

# Translators: this is the spoken representation for the character '⋝' (U+22dd)
_operators['\u22dd'] = C_('math symbol', 'equal to or greater than')

# Translators: this is the spoken representation for the character '⋝' (U+22de)
_operators['\u22de'] = C_('math symbol', 'equal to or precedes')

# Translators: this is the spoken representation for the character '⋝' (U+22df)
_operators['\u22df'] = C_('math symbol', 'equal to or succeeds')

# Translators: this is the spoken representation for the character '⋠' (U+22e0)
_operators['\u22e0'] = C_('math symbol', 'does not precede or equal')

# Translators: this is the spoken representation for the character '⋡' (U+22e1)
_operators['\u22e1'] = C_('math symbol', 'does not succeed or equal')

# Translators: this is the spoken representation for the character '⋢' (U+22e2)
_operators['\u22e2'] = C_('math symbol', 'not square image of or equal to')

# Translators: this is the spoken representation for the character '⋣' (U+22e3)
_operators['\u22e3'] = C_('math symbol', 'not square original of or equal to')

# Translators: this is the spoken representation for the character '⋤' (U+22e4)
_operators['\u22e4'] = C_('math symbol', 'square image of or not equal to')

# Translators: this is the spoken representation for the character '⋥' (U+22e5)
_operators['\u22e5'] = C_('math symbol', 'square original of or not equal to')

# Translators: this is the spoken representation for the character '⋦' (U+22e6)
_operators['\u22e6'] = C_('math symbol', 'less than but not equivalent to')

# Translators: this is the spoken representation for the character '⋧' (U+22e7)
_operators['\u22e7'] = C_('math symbol', 'greater than but not equivalent to')

# Translators: this is the spoken representation for the character '⋨' (U+22e8)
_operators['\u22e8'] = C_('math symbol', 'precedes but not equivalent to')

# Translators: this is the spoken representation for the character '⋩' (U+22e9)
_operators['\u22e9'] = C_('math symbol', 'succeeds but not equivalent to')

# Translators: this is the spoken representation for the character '⋪' (U+22ea)
_operators['\u22ea'] = C_('math symbol', 'not normal subgroup of')

# Translators: this is the spoken representation for the character '⋫' (U+22eb)
_operators['\u22eb'] = C_('math symbol', 'does not contain as normal subgroup')

# Translators: this is the spoken representation for the character '⋬' (U+22ec)
_operators['\u22ec'] = C_('math symbol', 'not normal subgroup of or equal to')

# Translators: this is the spoken representation for the character '⋭' (U+22ed)
_operators['\u22ed'] = C_('math symbol', 'does not contain as normal subgroup or equal')

# Translators: this is the spoken representation for the character '⋮' (U+22ee)
_operators['\u22ee'] = C_('math symbol', 'vertical ellipsis')

# Translators: this is the spoken representation for the character '⋯' (U+22ef)
_operators['\u22ef'] = C_('math symbol', 'midline horizontal ellipsis')

# Translators: this is the spoken representation for the character '⋰' (U+22f0)
_operators['\u22f0'] = C_('math symbol', 'up right diagonal ellipsis')

# Translators: this is the spoken representation for the character '⋱' (U+22f1)
_operators['\u22f1'] = C_('math symbol', 'down right diagonal ellipsis')

# Translators: this is the spoken representation for the character '⋲' (U+22f2)
_operators['\u22f2'] = C_('math symbol', 'element of with long horizontal stroke')

# Translators: this is the spoken representation for the character '⋳' (U+22f3)
_operators['\u22f3'] = C_('math symbol', 'element of with vertical bar at end of horizontal stroke')

# Translators: this is the spoken representation for the character '⋴' (U+22f4)
_operators['\u22f4'] = C_('math symbol', 'small element of with vertical bar at end of horizontal stroke')

# Translators: this is the spoken representation for the character '⋵' (U+22f5)
_operators['\u22f5'] = C_('math symbol', 'element of with dot above')

# Translators: this is the spoken representation for the character '⋶' (U+22f6)
_operators['\u22f6'] = C_('math symbol', 'element of with overbar')

# Translators: this is the spoken representation for the character '⋷' (U+22f7)
_operators['\u22f7'] = C_('math symbol', 'small element of with overbar')

# Translators: this is the spoken representation for the character '⋸' (U+22f8)
_operators['\u22f8'] = C_('math symbol', 'element of with underbar')

# Translators: this is the spoken representation for the character '⋹' (U+22f9)
_operators['\u22f9'] = C_('math symbol', 'element of with two horizontal strokes')

# Translators: this is the spoken representation for the character '⋺' (U+22fa)
_operators['\u22fa'] = C_('math symbol', 'contains with long horizontal stroke')

# Translators: this is the spoken representation for the character '⋻' (U+22fb)
_operators['\u22fb'] = C_('math symbol', 'contains with vertical bar at end of horizontal stroke')

# Translators: this is the spoken representation for the character '⋼' (U+22fc)
_operators['\u22fc'] = C_('math symbol', 'small contains with vertical bar at end of horizontal stroke')

# Translators: this is the spoken representation for the character '⋽' (U+22fd)
_operators['\u22fd'] = C_('math symbol', 'contains with overbar')

# Translators: this is the spoken representation for the character '⋾' (U+22fe)
_operators['\u22fe'] = C_('math symbol', 'small contains with overbar')

# Translators: this is the spoken representation for the character '⋿' (U+22ff)
_operators['\u22ff'] = C_('math symbol', 'z notation bag membership')

# Translators: this is the spoken representation for the character '⌈' (U+2308)
_operators['\u2308'] = C_('math symbol', 'left ceiling')

# Translators: this is the spoken representation for the character '⌉' (U+2309)
_operators['\u2309'] = C_('math symbol', 'right ceiling')

# Translators: this is the spoken representation for the character '⌊' (U+230a)
_operators['\u230a'] = C_('math symbol', 'left floor')

# Translators: this is the spoken representation for the character '⌋' (U+230b)
_operators['\u230b'] = C_('math symbol', 'right floor')

# Translators: this is the spoken representation for the character '⏞' (U+23de)
_operators['\u23de'] = C_('math symbol', 'top brace')

# Translators: this is the spoken representation for the character '⏟' (U+23df)
_operators['\u23df'] = C_('math symbol', 'bottom brace')

# Translators: this is the spoken representation for the character '⟨' (U+27e8)
_operators['\u27e8'] = C_('math symbol', 'left angle bracket')

# Translators: this is the spoken representation for the character '⟩' (U+27e9)
_operators['\u27e9'] = C_('math symbol', 'right angle bracket')

# Translators: this is the spoken representation for the character '⨀' (U+2a00)
_operators['\u2a00'] = C_('math symbol', 'circled dot')

# Translators: this is the spoken representation for the character '⨁' (U+2a01)
_operators['\u2a01'] = C_('math symbol', 'circled plus')

# Translators: this is the spoken representation for the character '⨂' (U+2a02)
_operators['\u2a02'] = C_('math symbol', 'circled times')
# Translators: this is the spoken representation for the character '⨃' (U+2a03)
_operators['\u2a03'] = C_('math symbol', 'union with dot')
# Translators: this is the spoken representation for the character '⨄' (U+2a04)
_operators['\u2a04'] = C_('math symbol', 'union with plus')
# Translators: this is the spoken representation for the character '⨅' (U+2a05)
_operators['\u2a05'] = C_('math symbol', 'square intersection')
# Translators: this is the spoken representation for the character '⨆' (U+2a06)
_operators['\u2a06'] = C_('math symbol', 'square union')

# Translators: this is the spoken representation for the character '■' (U+25a0)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25a0'] = C_('math symbol', 'black square')

# Translators: this is the spoken representation for the character '□' (U+25a1)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25a1'] = C_('math symbol', 'white square')

# Translators: this is the spoken representation for the character '◆' (U+25c6)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25c6'] = C_('math symbol', 'black diamond')

# Translators: this is the spoken representation for the character '○' (U+25cb)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25cb'] = C_('math symbol', 'white circle')

# Translators: this is the spoken representation for the character '●' (U+25cf)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25cf'] = C_('math symbol', 'black circle')

# Translators: this is the spoken representation for the character '◦' (U+25e6)
_shapes['\u25e6'] = C_('math symbol', 'white bullet')

# Translators: this is the spoken representation for the character '◾' (U+25fe)
# when used as a geometric shape (i.e. as opposed to a bullet in a list).
_shapes['\u25fe'] = C_('math symbol', 'black medium small square')

# Translators: this is the spoken representation for the character '̱' (U+0331)
# which combines with the preceding character. '%s' is a placeholder for the
# preceding character. Some examples of combined symbols can be seen in this
# table: http://www.w3.org/TR/MathML3/appendixc.html#oper-dict.entries-table.
_combining['\u0331'] = C_('math symbol', '%s with underline')

# Translators: this is the spoken representation for the character '̸' (U+0338)
# which combines with the preceding character. '%s' is a placeholder for the
# preceding character. Some examples of combined symbols can be seen in this
# table: http://www.w3.org/TR/MathML3/appendixc.html#oper-dict.entries-table.
_combining['\u0338'] = C_('math symbol', '%s with slash')

# Translators: this is the spoken representation for the character '⃒' (U+20D2)
# which combines with the preceding character. '%s' is a placeholder for the
# preceding character. Some examples of combined symbols can be seen in this
# table: http://www.w3.org/TR/MathML3/appendixc.html#oper-dict.entries-table.
_combining['\u20D2'] = C_('math symbol', '%s with vertical line')

_all.update(_alnum)
_all.update(_arrows)
_all.update(_operators)
_all.update(_shapes)
_RE = None
_RE_COMBINING = None

def __compileRE():
    global _RE
    try:
        _RE = re.compile('[%s]' % ''.join(list(_all.keys())), re.UNICODE)
    except:
        _RE = None

def __compileRE_COMBINING():
    global _RE_COMBINING
    try:
        _RE_COMBINING = re.compile('.[%s]' % ''.join(list(_combining.keys())),
                                   re.UNICODE)
    except:
        _RE_COMBINING = None

def _getStyleString(symbol):
    o = ord(symbol)
    if o in _bold or o in _boldGreek or o in _boldDigits:
        return BOLD
    if o in _italic or o in _italicGreek or o in _otherItalic:
        return ITALIC
    if o in _boldItalic or o in _boldItalicGreek:
        return BOLD_ITALIC
    if o in _script or o in _otherScript:
        return SCRIPT
    if o in _boldScript:
        return BOLD_SCRIPT
    if o in _fraktur or o in _otherFraktur:
        return FRAKTUR
    if o in _doubleStruck or o in _doubleStruckDigits or o in _otherDoubleStruck:
        return DOUBLE_STRUCK
    if o in _boldFraktur:
        return BOLD_FRAKTUR
    if o in _sansSerif or o in _sansSerifDigits:
        return SANS_SERIF
    if o in _sansSerifBold or o in _sansSerifBoldGreek or o in _sansSerifBoldDigits:
        return SANS_SERIF_BOLD
    if o in _sansSerifItalic:
        return SANS_SERIF_ITALIC
    if o in _sansSerifBoldItalic or o in _sansSerifBoldItalicGreek:
        return SANS_SERIF_BOLD_ITALIC
    if o in _monospace or o in _monospaceDigits:
        return MONOSPACE
    if o in _dotless:
        return DOTLESS

    return "%s"

def updateSymbols(symbolDict):
    global _all
    _all.update(symbolDict)

def _getSpokenName(symbol, includeStyle):
    if not symbol in _all:
        return ""

    name = _all.get(symbol)
    if not name and fallbackOnUnicodeData:
        name = unicodedata.name(symbol).lower()
        updateSymbols({symbol: name})
        return name

    if includeStyle and symbol in _alnum:
        name = _getStyleString(symbol) % name

    return name

def getCharacterName(symbol):
    return _getSpokenName(symbol, speakStyle != SPEAK_NEVER)

def adjustForSpeech(string):
    if _RE is None:
        __compileRE()

    if _RE_COMBINING is None:
        __compileRE_COMBINING()

    if _RE_COMBINING is not None:
        combiningPairs = set(re.findall(_RE_COMBINING, string))
        for pair in combiningPairs:
            name = _combining.get(pair[1])
            if name:
                string = re.sub(pair, " %s " % (name % pair[0]), string)

    if _RE is not None:
        chars = set(re.findall(_RE, string))
        includeStyle = speakStyle == SPEAK_ALWAYS
        for char in chars:
            name = _getSpokenName(char, includeStyle)
            if name:
                string = re.sub(char, " %s " % name, string)

    return string

Youez - 2016 - github.com/yon3zu
LinuXploit